ANNUAL SURVEY COVERING THE YEAR 1971

ANDREW WOJCICKI Department of Chemistry, The Ohio State University Columbus, Ohio, 43210 (U.S.A.)

Synthesis and Reactions

In general, the format of this section parallels that of the 1970 Survey. Briefly, papers concerned primarily with preparative aspects of organometallic chemistry of the Group VII elements are dealt with in the following order: metal carbonyls; carbonyl halides; carbonyls with N-donor, P- and As-donor, O-donor, and S-donor ligands; boron-containing metal carbonyls; N₂ complexes; metal-metal bonded compounds; hydrides; M-C σ bonded complexes; compounds with fluorocarbon ligands; and π -complexes. The last part of this section does not include those reactions which lead to substitution on the π -C₅H₅ ring of π -C₅H₅M(CO)₃ without affecting the M(CO)₃ moiety. They are covered in the Chapter on ''Organic Reactions of Selected π -Complexes''.

Unless indicated otherwise, structures of the complexes referred to in this section were inferred with the aid of one or more of the following techniques: vibrational spectroscopy, proton (also, where applicable, ^{19}F , ^{11}B , etc.) resonance spectroscopy, and mass spectrometry.

A new synthetic procedure for $Mn_2(CO)_{10}$ has been patented which uses $(\pi-CH_3C_5H_4)Mn(CO)_3$, naphthalene, and sodium in diglyme at 80-150° and under 1 atm of CO [1]. High-pressure preparative methods for $Mn_2(CO)_{10}$ [2,3] and $Re_2(CO)_{10}$ [4] have been also reported, the first two in the patent literature.

Photochemical reaction between $\text{Re}_2(\text{CO})_{10}$ and I_2 yields either $\text{Re}(\text{CO})_5\text{I}$ or $\text{Re}_2(\text{CO})_8\text{I}_2$ depending on experimental conditions [5]. The use of Pyrexfiltered ultraviolet light at room temperature promotes the formation of $\text{Re}(\text{CO})_5\text{I}$, whereas unfiltered ultraviolet light and higher temperatures (110°) favor $\text{Re}_2(\text{CO})_8\text{I}_2$. Treatment of K_2ReI_6 in acetone with CO, followed by addition of R_4NI , affords the ionic $\text{R}_4\text{N}[\frac{\text{trans}}{\text{Re}(\text{CO})_2\text{I}_4]$ [6]. However, if both KOH and R_4NI are introduced into K_2ReI_6 treated the same way with CO in acetone, then orange, paramagnetic ($\text{R}_4\text{N})_2[\frac{\text{trans}}{\text{Re}(\text{CO})_2\text{I}_4]$ becomes the product. A longer treatment of K_2ReI_6 with CO in acetone and subsequent addition of KOH and R_4NI yield the known $\text{R}_4\text{N}[\text{Re}(\text{CO})_4\text{I}_2]$.

Reported in a doctoral dissertation are reactions of $Mn(CO)_4NO$ with halogens and pseudohalogens, as well as quantum yields for some photochemical substitution reactions of $Mn(CO)_4NO$ [7]. The latter vary with the ligand L and with the concentration of the better nucleophiles.

Several new halogenonitrosyl complexes of rhenium have been prepared by Zingales and coworkers [8]. Treatment of $[Re(CO)_4CL]_2$ with NO and HCL affords chlorine-bridged $[Re(CO)_2(NO)CL_2]_2$, from which the corresponding bromide and iodide can be synthesized by methatetical reactions. $[Re(CO)_2(NO)CL_2]_2$ reacts with L (L = P(C_4H_9)_3, pyridines, and O-donor ligands) to give $Re(CO)_2(NO)LCL_2$. The bromo and iodo complexes react analogously with pyridine. The reaction of $Re(CO)_4LCL$ or $Re(CO)_3L_2CL$ with NO and HCL also affords $Re(CO)_2(NO)LCL_2$.

The complexes $[M(CO)_3(NCCH_3)X]_2$, of proposed structure (I), result when $M(CO)_5X$ (M = Mn or Re, X = Cl, Br, or I) reacts with CH₃CN in 2,2dimethoxypropane [9]. One member of this series (M = Mn, X = Cl) was reported earlier (AS 2, 162).

Several isocyanatocarbonyls of rhenium have been prepared using anhydrous hydrazine as the source of nitrogen [10]. Reaction of <u>trans</u>-Re(CO)₄IBr (L = P(C₆H₅)₃) or <u>cis</u>-Re(CO)₄IBr (L = P(C₆H₅)₃, P(CH₃)₂C₆H₅,

336

or As(CH₃)₂C₆H₅) with hydrazine affords Re(CO)₃L(NH₂NH₂)NCO (II), whereas that of mer(L's trans)-Re(CO)₃L₂X (L = P(C₆H₅)₃, X = Br; L = P(CH₃)₂C₆H₅ or P(CH₃)(C₆H₅)₂, X = Cl) gives Re(CO)₂L₂(NH₂NH₂)NCO (III). Substitution reactions of (II) and (III) furnish additional dicarbonyl and tricarbonyl isocyanato complexes. Some of these compounds were incorrectly reported earlier (AS <u>6</u>, 1103) as containing molecular nitrogen. Treatment of Re(CO)₃(PR₃)₂Cl with NaN₃ or C₆H₅C(0)N₃ affords Re(CO)₃(PR₃)₂N₃ (R = P(CH₃)₂C₆H₅ or P(CH₃)(C₆H₅)₂) rather than isocyanatocarbonyls.

In a related study, $\underline{\operatorname{mer}}(P' \le \underline{\operatorname{trans}}) - \operatorname{Mn}(\operatorname{CO})_3[P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5]_2\operatorname{Br}$ was found to react with $\operatorname{NH}_2\operatorname{NH}_2$ to give $\operatorname{Mn}(\operatorname{CO})_2[P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5]_2(\operatorname{NH}_2\operatorname{NH}_2)\operatorname{NCO}$, which affords $\operatorname{Mn}(\operatorname{CO})_3[P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5]_2\operatorname{NCO}$ and $\operatorname{Mn}(\operatorname{CO})_2[P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5]_3\operatorname{NCO}$ upon reaction with CO and $P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5$, respectively [11]. The last dicarbonyl yields $\operatorname{Mn}(\operatorname{CO})_2[P(\operatorname{CH}_3)_2\operatorname{C}_6\operatorname{H}_5]_3\operatorname{Br}$ when treated with bromide. The stereochemistries of these compounds are discussed.

Reaction of $M(CO)_5$ Br or $M_2(CO)_{10}$ (M = Mn or Re) with potassium

dihydrobis(pyrazolyl)borate affords the crystalline complexes $[H_2B(N_2C_3H_3)_2]M(CO)_3(pyrazole) (IV) [12].$ Substitution reactions of (IV) have afforded <u>cis</u>-[H_2B(N_2C_3H_3)_2]Mn(CO)_2L_2 (L_2 = (C_6H_5)_2F CH_2CH_2P(C_6H_5)_2 or $2P(CH_3)_2C_6H_5$), <u>fac</u>-[H_2B(N_2C_3H_3)_2]Mn(CO)_3X⁻ (X = Br or I), and $[H_2B(N_2C_3H_3)_2]M(CO)_2L_2 (V: M = Mn, L = P(OCH_3)_3 \text{ or } C_2H_5C(CH_2O)_3P; M = Re,$ L = $CH_3C(CH_2O)_3P$.

Chatt and associates [13] report reactions of some benzoylazo complexes of rhenium. $Re[P(C_6H_5)_3]_2(N_2COC_6H_5)Cl_2$ affords $Re(CO)_2[P(C_6H_5)_3]_2(N_2COC_6H_5)Cl_2$ when treated with CO. This unstable golden-yellow dicarbonyl reacts with Cl_2 to give $Re(CO)[P(C_6H_5)_3]_2(N_2COC_6H_5)Cl_3$ and decomposes upon chromatography on silica gel to furnish, among other products, $Re(CO)_2(N_2)[P(C_6H_5)_3]_2Cl_2$.

The complexes Nî(saen) and Ni(aben) (saen = N,N'-ethylenebis-(salicylideneiminato) and aben = N,N'-ethylenebis(\underline{o} -aminobenzylideneiminato)) react with Mn(CO)₅X (X = Cl or Br) to yield Ni(saen)Mn(CO)₃X and Ni(aben)-Mn(CO)₃X, respectively [14]. The infrared spectra indicate C_{2v} local symmetry around manganese in both products.

Two metalloporphyrins have been isolated from the reaction of mesoporphyrin IX dimethyl ester with $\operatorname{Re}_2(\operatorname{CO})_{10}$: μ -[mesophorphyrin IX dimethyl esterato]bis[tricarbonylrhenium(I)] and (monohydrogen mesoporphyrin IX dimethyl esterato)tricarbonylrhenium(I) [15].

Replacement of CO with PF_3 in $Mn(CO)_4NO$ [16], $HCF_2CF_2Mn(CO)_5$, and $HRe(CO)_5$ [17] has been the subject of doctoral dissertations. The use of

 $Ni(PF_3)_4$ in synthesis of PF_3 -containing metal complexes has been reported [18]. Prepared by this general procedure have been $Mn_2(CO)_{10-x}(PF_3)_x$ (x = 0, 1, or 2) or $Mn_2(CO)_8(PF_3)_2$, starting with $Mn(CO)_5Br$, and $Re(CO)_3(PF_3)_2Br$, from $Re(CO)_5Br$ and excess $Ni(PF_3)_4$.

Reaction of $Mn_2(CO)_{10}$ with $P(C_6H_5)_3$ has been studied under various experimental conditions [19]. Two compounds analyzing for ''Mn(CO)_4P(C_6H_5)_3'' were obtained: dimeric $Mn_2(CO)_6[P(C_6H_5)_3]_2$ [20] and a monomeric, diamagnetic ''Mn(CO)_4P(C_6H_5)_3'', possibly trans-HMn(CO)_4P(C_6H_5)_3. The diamagnetic species had been isolated earlier from the interaction of $C_6H_5CH_2SO_2Mn(CC)_5$ with $P(C_6H_5)_3$ [21].

Dirhenium dodecacarbonyl reacts photochemically with 1 mole of $P(CH_3)(C_6H_5)_2$ (L) to give $Re_2(CO)_3L$, $Re_2(CO)_8L_2$, two isomers of $Re_2(CO)_7L_3$, and $Re_4(CO)_{10}L_6$ [22]. With 2 moles of L, $Re_2(CO)_{10}$ affords two isomers of $Re_2(CO)_7L_3$ and $Re(CO)_3L_2$. By way of contrast, thermal reaction between $Re_2(CO)_{10}$ and 1 mole of L yields $Re_2(CO)_8L_2$ as the only isolable product. The interaction between $Re_2(CO)_8L_2$, $Re_2(CO)_7L_3$, $Re_4(CO)_{10}L_6$, or $Re(CO)_3L_2$ and dry HC1 leads to the formation of <u>cis</u>- and <u>trans</u>-Re(CO)_4LC1 and <u>mer</u> (L's <u>trans</u>)-Re(CO)_3L_2C1. Reaction of <u>mer</u>-ReL_3Cl_3 with CO in ethanol furnishes $mer(L^{\dagger}s trans)$ -Re(CO)_3L_2C1 and <u>mer(CO's cis</u>)-Re(CO)_2L_3C1. The first product can be also obtained by treating <u>mer</u>-ReL_3Cl_3 with Na(Hg) and CO and by the reaction of ReL_2Cl_4 with CO in 2-methoxyethanol. An unusual paramagnetic $Re(CO)_5[P(CH_3)_2C_6H_5]$, obtained from $Re_2(CO)_{10}$ and $P(CH_3)_2C_6H_5$ (> 2 moles), is also mentioned.

In a series of papers King and coworkers report [23, 24, 25] on reactions between various manganese carbonyls and several polydentate phosphines. Treatment of $CH_3Mn(CO)_5$ and $Mn(CO)_5Br$ with $[(C_6H_5)_2PCH_2CH_2]_2PC_8H_5$ (Pf-Pf-Pf) yields $CH_3Mn(CO)_3(Pf-Pf-Pf)$ and $Mn(CO)_2(Pf-Pf-Pf)Br$, respectively [23]. The tetradentate $(C_6H_5)_2PCH_2CH_2P(C_6H_5)CH_2CH_2P(C_6H_5)CH_2CH_2P(C_6H_5)_2$ (Pf-Pf-Pf) and $[(C_6H_5)_2PCH_2CH_2]_3P$ (P-(Pf)₃) furnish $CH_3Mn(CO)_3(Pf-Pf-Pf)Pf$,

 $CH_{3}Mn(CO)_{2}[P-(Pf)_{3}], and CH_{3}COMn(CO)_{3}[P-Pf)_{3}] \text{ upon reaction with } CH_{3}Mn(CO)_{5}, \\ and Mn(CO)_{2}(Pf-Pf-Pf-Pf)Br and Mn(CO)_{2}[P-(Pf)_{3}]Br with Mn(CO)_{5}Br [24]. The \\ hexatertiary phosphine [(C_{6}H_{5})_{2}PCH_{2}CH_{2}]_{2}PCH_{2}CH_{2}P[CH_{2}CH_{2}P(C_{6}H_{5})_{2}]_{2} (P_{2}-(Pf)_{4}) \\ yields: (a) [CH_{3}Mn(CO)_{2}]_{2}[P_{2}-(Pf)_{4}] and/or CH_{3}Mn(CO)_{2}[P_{2}-(Pf)_{4}] upon \\ reaction with CH_{3}Mn(CO)_{5} in xylene or mesitylene at reflux, and \\ CH_{3}COMn(CO)_{3}[P_{2}-(Pf)_{4}] with CH_{3}Mn(CO)_{5} in THF; (b) (\pi-C_{5}H_{5})_{2}Mn_{2}(CO)_{3}- \\ [P_{2}-(Pf)_{4}] when treated with $\pi-C_{5}H_{5}Mn(CO)_{3}; and (c) {(\pi-C_{5}H_{5})_{2}Mn_{2}(CO)(NO)_{2}- \\ [P_{2}-(Pf)_{4}]} (PF_{6})_{2} upon reaction with [$\pi-C_{5}H_{5}Mn(CO)_{2}NO]FF_{6} [25].$

Dimanganese decacarbonyl and $(AsCH_3)_5$ react in the presence of light at room temperature to give $Mn_2(CO)_8(AsCH_3)_5$ (VI), whose proposed structure is based on the ¹H NMR and mass spectra [26]. The same reactants yield $[Mn(CO)_3(AsCH_3)_4]_2$, of possible structure (VII), when heated at 150°.

The reaction between $Mn_2(CO)_{10}$ and $As(CH_3)_2I$ affords the unsymmetricallybridged $Mn_2(CO)_8[As(CH_3)_2]I$, whereas that between $Mn_2(CO)_{10}$ and $As(CH_3)_2X$ (X = Cl or Br) yields polymeric carbonyls of unknown structure [2?]. A series of analogous complexes $Mn_2(CO)_8[As(CH_3)_2]X$ (X = SCF₃, SCH₃, Cl, $P(CH_3)_2$, and H) has been prepared starting with $Mn_2(CO)_8[As(CH_3)_2]I$. Both $Mn_2(CO)_8[E(CF_3)_2]_2$ and $Mn_2(CO)_8[E^*(CH_3)_2][E(CF_3)_2]$ result upon treatment of $Mn_2(CO)_{10}$ with $(CH_3)_2E^*-E(CF_3)_2$ (E = P, E^{*} = As; E = As, E^{*} = P). The infrared, ¹H NMR, and mass spectra of these dimanganese compounds are reported. The photochemically generated complexes $M(CO)_5[E(CH_3)_2Cl]$ (M = Cr, Mo, and W, E = P and As) react with NaM'(CO)₅ (M' = Mn and Re) to produce $(CO)_5ME(CH_3)_2M'(CO)_5$ as yellow-to-orange, air-stable, crystalline solids [28]. On heating or photolysis, these products decompose to $M(CO)_6$ and $M'_2(CO)_8[E(CH_3)_2]_2$.

As part of a broader study, Chiswell, et al. [29] report on the reaction of $Mn(CO)_5Br$ with <u>o</u>-dimethylarsinoaniline (MAA) and 1-amino-2-(diphenylarsino)ethane (APE). Diamagnetic, insoluble complexes of formula $Mn(CO)_2(MAA)Br$ and $Mn(CO)_2(APE)Br$, tentatively assigned structure (VIII a or b: N-AS = MAA or APE), were isolated.

M = Ge or Sn, occurs at $60-70^{\circ}$ and affords <u>ca</u>. 80% yields of the products [30]

The complexes $\underline{\operatorname{mer}}(L' \ {\operatorname{trans}}) - \operatorname{Mn}(\operatorname{CO})_{3}L_{2}\operatorname{Br} (L = P(\operatorname{CH}_{3})_{2}\operatorname{C}_{6}\operatorname{H}_{5} \operatorname{or}$ As(CH₃)₂C₆H₅) and <u>fac</u>-Mn(CO)₃L₂Br (L = As(CH₃)₂C₆H₅; L₂ = (C₆H₅)₂-PCH₂CH₂P(C₆H₅)₂ or (C₆H₅)₂PCH₂P(C₆H₅)₂) in benzene undergo rapid oxidation with NOFF₆ to give green crystalline [<u>fac</u>-Mn(CO)₃L₂Br]PF₆ [31]. These Mn(II) products can be reduced back to Mn(I) with CHCl₃, H₂, or alcohols. The known anion [Re₂(CO)₆(OH)₃] (AS 5, 630) has been synthesized

<u>via</u> a different procedure which involves reaction of $\text{Re}_2(\text{CO})_{10}$ or $\text{Re}(\text{CO})_5$ Br with 0.1-0.3 M KOH [32].

Several carboxylatocarbonyl complexes of rhenium have been prepared by Lindner and Grimmer [33]. The reaction between RCO_2Na (R = CH₃ or C₆H₅) and Re(CO)₅Br in THF at 60^o affords the dinuclear [RCO₂Re(CO)₃]₂. These complexes can be carbonylated under 300 atm of CO at 50^o to the corresponding RCO₂Re(CO)₅, in which the carboxylate is monodentate. The reaction can be reversed by heating the pentacarbonyls to 80^o. Treatment of [C₆H₅CO₂Re(CO)₃]₂ with P(C₆H₅)₃ affords C₆H₅CO₂Re(CO)₃[P(C₆H₅)₃]₂.

New acetylacetonatonitrosyl complexes of rhenium, $\text{Re}(\text{CO})_2(\text{NO})^-$ (C₃HR₂O₂)Cl (IX), have been prepared by the reaction of [Re(CO)₂(NO)Cl₂]₂ with RC(0)CH₂C(0)R (R = CH₃, CF₃, or C₆H₅) [34]. [Re(CO)₂(NO)Cl₂]₂ reacts also with cyclooctene to afford [Re(CO)(NO)(cyclooctene)Cl₂]₂, which upon treatment with N-, P-, and As-donor ligands (L) gives Re(CO)(NO)L₂Cl₂.

(172.)

A detailed account has appeared [35] of the preparation of $R_2PS_2M(CO)_4$ (M = Mn or Re, R = C_2H_5 or C_6H_5) <u>via</u> the reaction of R_2PS_2Na with $M(CO)_5Br$ (AS 2, 164-165). The complex with R = C_2H_5 and M = Re was also obtained photochemically from $(C_2H_5)_2P(S)S_2P(S)(C_2H_5)_2$ and $Re_2(CO)_{10}$. Upon heating under reduced pressure $(10^{-2}mm)$ at 40° it forms $[(C_2H_5)_2PS_2Re(CO)_3]_2$, the reaction being reversed at high pressures of CO. Upon treatment with $P(C_6H_5)_3$ it affords $(C_2H_5)_2PS_2Re(CO)_3P(C_6H_5)_3$.

Preparation of new manganese complexes with boron-containing ligands has received some attention. The reaction:

 $[(CO)_4MnSSn(CH_3)_3]_2 + 2(CH_3)_2BBr \longrightarrow [(CO)_4MnSB(CH_3)_2]_2 + 2(CH_3)_3SnBr$ (2) affords the first thermally stable transition metal complex of a B-S system [36]. Treatment of B-trichloroborazine with NaMn(CO)_5 yields B_3[Mn(CO)_5]_3N_3H_3 (X); B_3Cl_3N_3(CH_3)_3 and NaMn(CO)_5 gave an analogous, but rather unstable, compound [37].

affords a purple, crystalline product which is stable to air, and for which structure (XI) has been suggested [38]. Treatment of (XI) with $(C_{6}H_{5})_{3}CBF_{4}$ yields the BF₂ analog (XII).

References p. 379

343

The preparation and characterization of $[P(CH_3)_2C_6H_5]_4ClReN_2CrCl_3(THF)_2$ have been described [39]. The complex is obtained from <u>trans</u>- $Re[P(CH_3)_2C_6H_5]_4(N_2)Cl$ and $CrCl_3(THF)_3$; its magnetic moment indicates presence of Re(I) and Cr(III).

The synthesis of and studies on complexes containing Group VII metalmetal and metal-metalloid bonds continued to create interest during 1971. Displacement of the carbonyl anion with a more nucleophilic metal carbonylate from $(C_{6}H_5)_3$ SnM(CO)_x has been used in the synthesis of $(C_6H_5)_3$ SnRe(CO)₅ and $(C_6H_5)_3$ SnMn(CO)₅ from $(C_6H_5)_3$ SnCo(CO)₄ and NaRe(CO)₅ or NaMn(CO)₅, respectively [40]. π -C₅H₅Fe(CO)₂Sn(C₆H₅)₃ was prepared similarly from $(C_6H_5)_3$ SnMn(CO)₅ and Na[π -C₅H₅Fe(CO)₂]. The importance of the leaving group in the preparation of metal-metal bonded compounds by nucleophilic displacement reactions is further underscored by O'Brien, <u>et al.</u> [41]. For example, the reaction between $(C_6H_5)_2$ GeCl₂ and Mn(CO)₅⁻ gives $[(C_6H_5)_2$ ClGe]Mn(CO)₅, whereas that between $(C_6H_5)_2$ GeBr₂ and Mn(CO)₅⁻

Treatment of $Mn_2(CO)_{10}$ with R_3SiH in a sealed tube at 130° yields $(\underline{CB}, 20_{f})$ the complexes $R_3SiMn(CO)_5$ ($R_3SiH = (CH_3)_3SiSi(CH_3)_2H$, $[(CH_3)_3Si]_2Si(CH_3)H$, or $[(CH_3)_3Si]_3SiH$) as white waxy crystals [42]. The reaction between $Mn_2(CO)_{10}$ and MCL_3^- (M = Sn or Ge) in the presence of ultraviolet light affords the axially-substituted $[Mn_2(CO)_3MCL_3]^-$ [43]. Similarly, $[\pi-C_5H_5Mn(CO)_2MCL_3]^-$ and $[(\pi-CH_3C_5H_4)Mn(CO)_2MCL_3]^-$ have been obtained from $\pi-C_5H_5Mn(CO)_3$ or $(\pi-CH_3C_5H_4)Mn(CO)_3$, respectively, and MCL_3^- .

Jetz and Graham [44] have obtained π -C₅H₅Mn(CO)₂(H)SiCl₃ photochemically from π -C₅H₅Mn(CO)₃ and HSiCl₃. Analogous oxidative addition reactions have been employed in the synthesis of $(\pi$ -CH₃C₅H₄)Mn(CO)₂(H)Si(C₆H₅)₃ and $(\pi$ -CH₃C₅H₄)Mn(CO)₂(H)SiCl₃, but the last complex was not fully characterized. π -C₅H₅Mn(CO)₂(H)SiCl₃ can be deprotonated with (C₂H₅)₃N or (C₂H₅)₄NCl to produce [π -C₅H₅Mn(CO)₂SiCl₃] [45]. This anion reacts with SnCl₄ to afford

344

 π -C₅H₅Mn(CO)₂(SiCl₃)SnCl₃. Several analogous compounds, <u>viz</u>., (π -CH₃C₅H₄)-Mn(CO)₂(SiCl₃)SnCl₃, [(π -CH₃C₅H₄)Mn(CO)₂SiCl₃]₂SnCl₂, (π -CH₃C₅H₄)Mn(CO)₂-(SiCl₃)[Sn(C₆H₅)₂Cl], and (π -CH₃C₅H₄)Mn(CO)₂(SiCl₃)[Sn(C₆H₅)Cl₂], have been also prepared.

Attempts to insert CF_2 into the Mn-M (M = Ge and Sn) bonds of $(CH_3)_3MMn(CO)_5$ using $(CH_3)_3MCF_3$ have led to the isolation of $[CF_3(CH_3)_2Sn]Mn(CO)_5$ and $M(CH_3)_4$ [46]. When M = Sn, the reaction:

$$(CH_3)_2 Sn[Mn(CO)_5]_2 + (CH_3)_3 SnCF_3$$
 (4)

was also observed to occur.

Thermal reactions of $(C_{6}H_{5})_{3}MMn(CO)_{5}$ (M = Si and Ge) with $P(C_{6}H_{5})_{3}$ result in the formation of <u>trans</u>- $(C_{6}H_{5})_{3}MMn(CO)_{4}P(C_{6}H_{5})_{3}$ [47]. Similar substitution reactions were used in the synthesis of <u>fac</u>- $(C_{6}H_{5})_{3}MMn(CO)_{3}(dipy)$ and <u>mer</u>- $(C_{6}H_{5})_{3}MMn(CO)_{3}[(C_{6}H_{5})_{2}PCH_{2}CH_{2}P(C_{6}H_{5})_{2}]$ (M = Si, Ge, or Sn). In contrast, $(C_{6}H_{5})_{3}SiMn(CO)_{5}$ reacts with $P(OR)_{3}$ (R = CH₃, <u>i</u>- $C_{3}H_{7}$, or $C_{6}H_{5}$) at 80° to give <u>mer(P's trans</u>)-RCOMn(CO)_{3}[P(OR)_{3}]_{2} and $OP[OSi(C_{6}H_{5})_{3}]_{3}$ (AS 6, 1105). Evidence is presented that this unusual process first involves formation of RMn(CO)_{5} via a Michaelis-Arbuzov reaction.

In a preliminary communication, Marks [48] reports the formation of $[(C_6H_5)_2FGe]Mn(CO)_5$ from $[(C_6H_5)_2ClGe]Mn(CO)_5$ and AgBF₄.

Indium(I) chloride and bromide (X) undergo insertion into the Mn-Mn bond of $Mn_2(CO)_{10}$ when allowed to react in dioxane at reflux to afford, in good yield, $XIn[Mn(CO)_5]_2$ [49]. InX also insert into the Mn-Cl bond of $Mn(CO)_5$ Cl. Infrared spectroscopic evidence is presented [50] for the ionization schemes (X = Cl or Br):

$$In[Mn(CO)_{5}]_{3} \rightleftharpoons In[Mn(CO)_{5}]_{2}^{+} + Mn(CO)_{5}^{-}$$
 (5)

$$XIn[Mn(CO)_5]_2 \longrightarrow In[Mn(CO)_5]_2^+ + X^-$$
 (6)

$$2X_2 InMn(CO)_5 \rightleftharpoons In[Mn(CO)_5]_2^+ + InX_4^-$$
(7)

in CH₃CN. Further support for the formation of such metal carbonyl cations is derived from the isolation of $(CH_3CN)_2 In[Mn(CO)_5]_2^+ ClO_4^-$.

The previously reported (AS 2, 169-170) $T_{1}[Mn(CO)_{5}]_{3}$ has been also synthesized, virtually quantitatively, by the reaction [51]:

$$3T1C1 + 3NaMn(CO)_{5} = \frac{THF}{25^{\circ}} T1[Mn(CO)_{5}]_{3} + 2T1 + 3NaC1$$
 (8)

Reactions between $M[Mn(CO)_5]_2$ (M = Zn, Cd, or Hg) and Group IIB metal halides, Lewis bases, halogens, hydrogen halides, or organic halides have been investigated by Hsieh and Mays [52]. The prepared complexes include (dipy)Zn[Mn(CO)_5]_2, (C_5H_5N)_2Zn[Mn(CO)_5]_2, (diglyme)Cd[Mn(CO)_5]_2, and a number of related M[Mn(CO)_5]_2-Lewis base adducts.

The same authors have studied [53] various preparative routes to $M[Re(CO)_5]_2$ (M = Zn, Cd, or Hg). They include, <u>inter alia</u>, reactions of $Hg(CN)_2$ with NaRe(CO)₅ to give Hg[Re(CO)₅]₂, of HRe(CO)₅ with $Zn(C_2H_5)_2$ to yield $Zn[Re(CO)_5]_2$, of $HRe(CO)_5$ with $Cd(CH_3)_2$ to afford $Cd[Re(CO)_5]_2$, of $Re_2(CO)_{10}$ with Zn to give $Zn[Re(CO)_5]_2$, and of $Hg[Re(CO)_5]_2$ with Zn to yield $Zn[Re(CO)_5]_2$. The trimetallic $Hg[MnRe(CO)_{10}]$ was obtained from $Hg[Re(CO)_5]_2$ and $Hg[Mn(CO)_5]_2$ in THF at reflux, whereas $XHgRe(CO)_5$ (X = Cl, Br, or I) resulted upon heating $Hg[Re(CO)_5]_2$ with HgX_2 in acetone. Several Lewis base adducts of $M[Re(CO)_5]_2$ such as $(diglyme)Cd[Re(CO)_5]_2$, $(C_5H_5N)_2Cd[Re(CO)_5]_2$, and $(dipy)Cd[Re(CO)_5]_2$ were also prepared.

Treatment of C_6F_5 HgBr with $Mn(CO)_5$ leads to the formation of C_6F_5 HgMn(CO)₅, which is thermally stable to 100° [54].

A study of reactions between metal-metal bonded complexes and sulfur dioxide has revealed that $Mn_2(CO)_{10}$ is inert to SO_2 at 50^0 [55].

Several complexes containing Ru-Re bonds have been synthesized by Stone and associates [56, 57]. Treatment of $(CH_3)_3SiRu(CO)_4I$ with $Re(CO)_5^$ or of $[(CH_3)_3SiRu(CO)_4]^-$ with $Re(CO)_5Br$ yields (64, and 234, respectively) $(CH_3)_3SiRu(CO)_4Re(CO)_5$ (XIII) [56]. The synthesis of the analogous, known

manganese complex (AS <u>6</u>, 1107) (CH₃)₃SiR₁(CO)₄Mn(CO)₅ from (CH₃)₃SiR₁(CO)₄I and Mn(CO)₅ is also given. The germanium analog of (XIII), (CH₃)₃GeR₁(CO)₄-Re(CO)₅, also having a <u>trans</u> (D_{4d}) structure, was obtained <u>via</u> the reaction of [(CH₃)₃GeR₁(CO)₄] with Re(CO)₅Br [57].

The complex $[P(C_6H_5)_3]_2Ni[Mn(CO)_5]_2$ undergoes a substitution reaction with $P(C_6H_5)_3$ to give $[P(C_6H_5)_3]_2Ni[Mn(CO)_4P(C_6H_5)_3]_2$ [58]. The same product is also obtainable from $[P(C_6H_5)_3]_2NiCl_2$ and $Na[Mn(CO)_4P(C_6H_5)_3]_3$.

A new heteronuclear cluster, $[(\pi-C_5H_5)_2Ni_2Mn(CO)_5]$ of proposed structure (XIV), can be obtained when $(\pi-C_5H_5)_2Ni_2(CO)_2$ and $Mn(CO)_5$ are allowed to react in THF at reflux [59]. Its isolated, green $(CH_3)_4N^{\dagger}$ salt is extremely air-sensitive.

Treatment of NaMn(CO)₅ with UCl₄ produces orange, very air-sensitive U[Mn(CO)₅]₄, which reacts with Br₂ to yield UBr₄ and Mn(CO)₅Br [60]. In contrast, only Re(CO)₅Cl was obtained from reaction of Re(CO)₅⁻ with UCl₄. Thermally-induced reactions of Mn₂(CO)₁₀ and Re₂(CO)₁₀ with various metal carbonyls and other organometallics have furnished several new, as well as previously-synthesized polymetallic compounds [61]. Heating a *References* p. 379 mixture of $Mn_2(CO)_{10}$ and $Ru_3(CO)_{12}$ at 205° in an evacuated sealed tube affords $(CO)_5MnRu(CO)_4Mn(CO)_5$ (XV); prepared similarly were $(CO)_5MnOs(CO)_4$ - $Mn(CO)_5$ and $(CO)_5ReOs(CO)_4Re(CO)_5$. The reaction between $Mn_2(CO)_{10}$ and $(\pi-C_5H_5)_2Fe_2(CO)_4$ or $(\pi-C_5H_5)_2Mo_2(CO)_6$ yields small quantities of $\pi-C_5H_5Fe(CO)_2Mn(CO)_5$ and $\pi-C_5H_5Mo(CO)_3Mn(CO)_5$, respectively, in addition to $\pi-C_5H_5Mn(CO)_3$. The last compound is obtained as the sole product of the reaction of $Mn_2(CO)_{10}$ with $(\pi-C_5H_5)_2Ni_2(CO)_2$ or $(\pi-C_5H_5)_2Fe$.

The known compound $(CO)_4 \text{FeP}(C_6H_5)_2 \text{Mn}(CO)_4$ (XVI) (AS 5, 636) was synthesized by an alternative route involving reaction of $\text{Fe}(CO)_4[P(C_6H_5)_2\text{H}]$ with Mn(CO)_5Br in the presence of $(C_2H_5)_2$ NH [62].

Metal carbonyl hydride clusters have continued to attract attention during 1971. A significant finding is that $\text{Re}_2(\text{CO})_{10}$ reacts with hydrogen at atmospheric pressure at 90-170⁰ in hydrocarbon solvents [63]. In this fashion $\text{H}_3\text{Re}_3(\text{CO})_{12}$ and $\text{H}_4\text{Re}_4(\text{CO})_{12}$ have been obtained in 50-60¢ yields.

Photolysis of $Mn_2(CO)_{10}$ in acetone under nitrogen, followed by addition of $(C_2H_5)_4NClO_4$, has afforded ionic $[(C_2H_5)_4N][H_2Mn_3(CO)_{12}]$, which is thought to possess a triangular arrangement of the manganese atoms [64].

Acidification of the products of the reaction of $Os_3(CO)_{12}$ with $M(CO)_5$ (M = Mn or Re) under various conditions has afforded four new types of heterometallic polynuclear carbonyl hydrides [65]. They are: $HMOs_2(CO)_{12}$ (XVII: n = 0), $HMOs_3(CO)_{16}$ (XVIII a or b), $HReOs_3(CO)_{15}$ (XIX), and $H_3MOs_3(CO)_{13}$ (XX), the suggested possible structures not showing the positions of the hydrogens. In addition, the anions $[MOs_2(CO)_{12}]^-$ (XVII: n = -1) were isolated, as the $(CH_3)_4 N^+$ salts, from the reaction solution prior to acidification.

Several new monomuclear hydridocarbonyls of rhenium were synthesized starting with H_3ReL_4 (L = F(C₆H₅)₃) [66]. Treatment of this hydride with CO affords $HRe(CO)_2L_3$ and $HRe(CO)_3L_2$. $HRe(CO)_2L_3$, of a probable <u>mer</u> (CO's <u>cis</u>) structure, reacts with CS₂ to give $Re(CO)_2L_2(S_2CH)$ (see structure LIII) and with HX (X = Cl, Br, and I) to furnish $Re(CO)_2L_2X(solvent)$ (solvent = C_2H_5OH or acetone). $HRe(CO)_3L_2$ affords $Re(CO)_3L_2X$ with HX and $[Re(CO)_3L_2]_2$ with L.

Treatment of $HMn(CO)_5$ with $(CF_3)_2PX$ (L; X = Cl, Br, or I) leads to the formation of $Mn(CO)_5X$, $Mn_2(CO)_8X_2$, and $Mn_2(CO)_8[P(CF_3)_2]X$ [67]. In contrast, when X = F, CF₃, or CH₃, a <u>cis-trans</u> mixture of $HMn(CO)_4L$ results.

Several publications in 1971 were concerned with synthesis of compounds containing metal-carbon bonds and with investigation of their reactions. The preparation of $(CH_3)_3SiCH_2Mn(CO)_5$ from $Mn(CO)_5Br$ and $LiCH_2Si(CH_3)_3$ is described [68]. This alkyl undergoes carbon monoxide insertion upon treatment with CO. The observation that $CH_3Mn(CO)_5$ reacts with $Mn(CO)_5^-$ according to the equation [69]:

(9)

$$Mn(CO)_{5} + CH_{3}Mn(CO)_{5} = [(CO)_{5}MnMn(CO)_{4}]$$

further attests to the generality of the CO insertion in reactions of metal alkyls with nucleophiles. Addition of $(CH_3)_3OBF_4$ to the above solution gives the known (AS 6, 1115) $(CO)_5MnMn(CO)_4[C(CH_3)OCH_3]$. It appears very likely that the carbene ''($CO)_5Mn(CH_2)_3Mn(CO)_5$ '' (AS 2, 173) is formed similarly.

When $Mn(CO)_5Br$ reacts with 1-Li-10-CH₃-1,10-B₈C₂H₈, bright yellow 1-[Mn(CO)₅]-10-CH₃-1,10-(σ -B₈C₂H₈) (XXI) is obtained in 64¢ yield [70]. A related carborane complex, 1-[Mn(CO)₅]-2-CH₃-1,2-(σ -B₁₀C₂H₁₀) (XXII), results (57¢) from reaction of Mn(CO)₅Br with 1-Li-2-CH₃-1,2-B₁₀C₂H₁₀.

The first member of a new class of <u>o</u>-carborane derivatives of metal carbonyls containing a boron-metal σ -bond was obtained <u>via</u> the following sequence of reactions [71]:

Insertion reactions of the oxides of sulfur into transition metal-carbon bonds were the subject of two papers. Spectroscopic evidence has been presented that $C_{6}H_{5}CH_{2}Mn(CO)_{5}$ reacts with SO_{2} initially to form the O-sulfinate $C_{6}H_{5}CH_{2}S(0)OMn(CO)_{5}$, which then isomerizes to the isolable S-sulfinate [72]. Other transition metal-carbon compounds appear to exhibit similar behavior toward SO_{2} . The first example of insertion of SO_{3} into a transition metalcarbon bond has been reported [75]. RRe(CO)₅ (R = CH₃, C₆H₅, and <u>p</u>-C₆H₄CH₃) react with SO_{3} in CCl₄ at O^{0} to yield the sulfonato complexes RSO₃Re(CO)₅ (XXIII).

Considerable interest has developed in reactions of transition metal propargyl complexes with electrophilic reagents. Wojcicki, <u>et al.</u> [74] describe the preparation of RC=CCH₂Mn(CO)₅ (R = H and CH₃) from Mn(CO)₅⁻ and BrCH₂C=CR. These products react rapidly with SO₂ to yield Mn(CO)₅(C₃H₂RSO₂) having a vinyl-sultine structure (XXIV) [75] rather than that proposed originally (AS 5, 623; structure IV with R = H). When the vinyl-sultine complex with R = H is heated in vacue, it loses SO₂ and reverts to the parent 2-alkynyl. A similar reaction with SO₂ has been observed [76] for HC=CCH₂Mn(CO)₄P(C₆H₅)₃, which also reacts with RCO₂H (R = CH₃, C₂H₅, or CH₂Cl) to yield RCO₂CH₂(CH₂)CMn(CO)₄P(C₆H₅)₃ (XXV). In contrast, treatment of HC=CCH₂Mn(CO)₄P(C₆H₅)₃ with HX (X = Cl, Br, I, or CF₃CO₂) affords Mn(CO)₄[P(C₆H₅)₃]X. Unexpectedly, the disubstituted complex HC=CCH₂Mn(CO)₃[P(C₆H₅)₃]₂ failed to react with SO₂ at -78°.

An extension of the foregoing cycloaddition reactions to SO_3 has led to the isolation of manganese vinyl-sultone complexes [77]. $RC \equiv CCH_2Mn(CO)_5$ $(R = CH_3 \text{ and } C_6H_5)$ react with SO_3 dioxane in CH_2Cl_2 at O^0 to produce $Mn(CO)_5(C_3H_2RSO_3)$ (XXVI). Oxidation of (XXIV: $R = C_6H_5$), obtained from the propargyl carbonyl and SO_2 , with KMnO₄ in aqueous CH_3CO_2H yields (42%)(XXVI: $R = C_6H_5$).

(XXVI)

Other vinyl derivatives of manganese and rhenium carbonyls have been reported during 1971. The reaction between NaRe(CO)₅ and <u>trans</u>-RCOCH=CHCl (R = CH₃ or C₆H₅) furnishes three complexes: <u>cis</u>-RCOCH=CHRe(CO)₅ (XXVII), <u>trans</u>-RCOCH=CHRe(CO)₅ (XXVIII), and RCOCH=CHRe(CO)₄ (XXIX) [78]. (XXVII) readily loses CO yielding (XXIX) and isomerizes in the presence of HCl to (XXVIII). (XXVIII: R = CH₃) reacts with Fe₂(CO)₅ to give CH₃COCH=CHRe(CO)₅Fe(CO)₄ of proposed structure (XXX). The reaction between NaRe(CO)₅ and <u>cis</u>-CH₃COCH=CHCl also yields (XXVII, XXVIII, and XXIX: R = CH₃), the last compound being the major product (65¢) [79]. Vinyl ketone complexes of manganese of the type represented by (XXIX) can be prepared by the reaction of RMn(CO)₅ (R = CH₃ or C₆H₅) with the alkynes HC=CCH₂OH, HC=CC(CH₃)₂OH, and HOCH₂C=CCH₂OH [76].

In two preliminary communications, Bennett and Watt report on reactions between the ligand <u>o</u>-styryldiphenylphosphine (SP) and HM(CO)₅ (M = Mn and Re) [80] or CH₃Mn(CO)₅ [81]. The reaction of HMn(CO)₅ at 35^o gives initially HMn(CO)₄(SP), which contains an uncoordinated vinyl group. On heating, two isomeric products Mn(CO)₄[(C₆H₅)₂PC₆H₄C₂H₄] (XXXI and XXXII: M = Mn) are obtained. HRe(CO)₅ and SP afford initially HRe(CO)₄(SP), which at higher temperatures isomerizes to (XXXII: M = Re). Treatment of (XXXI: M = Mn) or (XXXII: M = Mn or Re) with (C₆H₅)₃CBF₄ gives the cation (XXXII: M = Mn or Re); reaction of (XXXIII: M = Re) with NaBH₄ furnishes (XXXI: M = Re). CH₃Mn(CO)₅ and SP afford two isomeric products Mn(CO)₄[(C₆H₅)₂PC₆H₄C₂H₃CH₃] whose structures have been elucidated by X-ray crystallography (vide infra: LVII and LVIII).

References p. 379

353

The stoichiometry and rate of decomposition of alkylmanganese species, $R_{c}Mn$, prepared in situ from MnCl₂ and RMgBr, have been examined [82]. The decomposition has been shown to proceed principally by α , β -elimination of a hydridomanganese species. Reactions have been also reported [83] of Mn(II) with <u>o</u>-diethynylbenzene to give polymeric, paramagnetic (5 unpaired electrons), and pyrophoric products.

Fluorocarbon derivatives of manganese carbonyl have been the subject of two papers during 1971. Treatment of $Mn(CO)_5$ with octafluorocyclopentene, C_5F_8 , affords the perfluoro complex (CO)₅MnC₅F₇ (XXXIV), which reacts with $P(C_6H_5)_3$ to give the <u>cis</u> and <u>trans</u> isomers of $[P(C_6H_5)_3]^-$ (CO)₄MnC₅F₇ [84]. The <u>trans</u> isomer alone is obtainable from $[Mn(CO)_4P(C_6H_5)_3]^-$ and C_5F_8 . The reaction between NaMn(CO)₅ and 3,3,4,4tetrafluoro-1,2-dichlorocyclobutene has yielded (CO)₅MnC₄F₄Cl (XXXV) [85].

Preparative investigations on π -complexes of the Group VII elements constituted the subject of a variety of papers during 1971. Several new $(\pi-XC_{5H_4})Mn(CO)_{2L}$ derivatives have been reported. The photochemicallyinduced reaction between π -C₅H₅Mn(CO)₃ and 2,3-diazabicyclo[2.2.1]heptene-2 affords orange, sublimable π -C₅H₅Mn(CO)₂(C₅H₆N₂) (XXXVI) [86]. Treatment of π -C₅H₅Mn(CO)₂(cycloheptene) with AsF₃ at 55[°] or a photochemical reaction between π -C₅H₅Mn(CO)₃ and AsF₃ affords yellow, sublimable π -C₅H₅Mn(CO)₂AsF₃ [87]. This product undergoes ethanolysis to yield the corresponding dicarbonyl complexes containing AsF₂(OC₂H₅) and AsF(OC₂H₅)₂. The ionization potentials of π -C₅H₅Mn(CO)₂EF₃ (E = P and As) show that the electron density at manganese is lower in the AsF₃ than in the PF₃ derivative, and therefore AsF₃ is a better π -acceptor than PF₃.

The complexes $(\pi-XC_5H_4)Mn(CO)_2L$ (X = H or CH₃, L = $P(\underline{t}-C_4H_9)_3$, $P[Si(CH_3)_3]_3$, $P[Ge(CH_3)_3]_3$, and $P[Sn(CH_3)_3]_3$) have been obtained photochemically from $(\pi-XC_5H_4)Mn(CO)_3$ and L [88]. Similarly, $\pi-C_5H_5Mn(CO)_2$ - $[(CH_3O)_2C=C(OCH_3)_2]$ arises when $\pi-C_5H_5Mn(CO)_3$ undergoes a photochemical reaction with tetramethoxyethylene [89]. Also obtained photochemically has been $\pi-C_5H_5Mn(CO)_2(C_8H_8C_6F_4)$ (XXXVII), which can be hydrogenated to $\pi-C_5H_5Mn(CO)_2(C_6H_8C_6F_4)$ (XXXVIII) [90].

References p. 379

Kursanov, et al. [91] have prepared a series of complexes $(\pi-XC_5H_4)Mn(CO)_2P(C_6H_5)_3$ (X = C_2H_5, CH_2C_6H_5, SCH_3, Cl, Br, I, COCH_3, CO_2H, and CO_2CH_3) via photochemical reaction of $(\pi-XC_5H_4)Mn(CO)_3$ with $P(C_6H_5)_3$. $(\pi-XC_5H_4)Mn(CO)_2P(C_6H_5)_3$ (X = Cl and Br) react with $BF_3 \cdot H_2O$ or CF_3CO_2H to give $\pi-C_5H_5Mn(CO)_2P(C_6H_5)_3$. A novel triferrocenylphosphine complex, $\pi-C_5H_5Mn(CO)_2P[\sigma-(\pi-C_5H_4Fe-\pi-C_5H_5)]_3$, was synthesized by a similar photochemical reaction [92]. Treatment of $(\pi-XC_5H_4)Mn(CO)_3$ (X = H or CH_3) with $(C_6H_5)_2P(CH_2)_4P(C_6H_5)_2$, also under photochemical conditions, has afforded $(\pi-XC_5H_4)Mn(CO)[(C_6H_5)_2P(CH_2)_4P(C_6H_5)_2]$ [93]. In contrast, the diarsines $(C_6H_5)_2As(CH_2)_nAs(C_6H_5)_2$ (n = 2 and 4) give $[(\pi-XC_5H_4)Mn(CO)_2]_2 [(C_6H_5)_2As(CH_2)_nAs(C_6H_5)_2]$ (XXXIX: X = H or CH_3, n = 2 or 4) under similar experimental conditions.

Two interesting ligand reactions have been effected using π -C₅H₅Mn(CO)₂L. Treatment of π -C₅H₅Mn(CO)₂(N₂H₄) with H₂O₂ in the presence of Cu²⁺ at -40^o in THF yields the reddish-brown, air-stable dinitrogen complex π -C₅H₅Mn(CO)₂(N₂) [94]. The known (AS <u>6</u>, 1119) π -C₅H₅Mn(CO)₂PH₃ and new π -C₅H₅Mn(CO)₂-[P(C₆H₅)H₂] have been synthesized by the reaction of π -C₅H₅Mn(CO)₂(PCl₂X) (X = Cl and C₆H₅, respectively) with NaBH₄ in THF [95].

The ligand $C_2H_5OC(O)CN$ (CFE) reacts under photochemical conditions with π - $C_5H_5Mn(CO)_3$ to yield a violet solid whose mass spectrum is consistent with the formula π - $C_5H_5Mn(CO)(CFE)$, yet whose infrared spectrum shows two $\nu(CO)$ bands [96]. Thermal reaction between $Mn_2(CO)_{10}$ and CFE affords [$Mn(CO)(CFE)_2$]₂.

New synthetic procedures have been reported for substituted r-cyclopentadienylmanganese and -rhenium tricarbonyls. Reaction of 5-acety1-1,2,3,4,5-pentamethylcyclopentadiene (XL) with Mn₂(CO)10 in boiling 2,2,5-trimethylhexane gives (12%) pale yellow, crystalline $[\pi-(CH_3)_5C_5]Mn(CO)_3$ [97]. The phosphine derivative $[\pi-(CH_3)_5C_5]Mn(CO)_2 P(C_{6}H_{5})_{3}$ was also synthesized. The complexes $[\pi - (CH_{3})_{3}SiC_{5}H_{4}]M(CO)_{3}$ arise when $M_2(CO)_{10}$ (M_2 = Mn_2 and Re_2) are heated with $(CH_3)_3SiC_5H_5$ [98]. The manganese reaction also affords $(CH_3)_3SiMn(CO)_5$ and π -C₅H₅Mn(CO)₃. Interaction of $[(CH_2)_{2}Sn](R)C_{5}H_4$ with $M(CO)_{5}Br$ (M = Mn or Re) has yielded the foregoing and other silul-substituted π -cyclopentadienyl complexes [99]. Obtained in this fashion have been $(\pi - RC_5H_4)M(CO)_3$ (M = Mn or Re, $R = (CH_3)_3Si$, $(CH_3)_5Si_2$, and $(CH_3)_3SiCH_2$. The dinuclear $(CH_3)_2$ Si[π -C₅H₄M(CO)₃]₂ and disubstituted { π -[(CH₃)₃Si]₂C₅H₃}M(CO)₃ (M = Mn or Re) derivatives result when $[(CH_3)_3SnC_5H_4]_2Si(CH_3)_2$ and $[(CH_3)_3Si]_2[(CH_3)_3Sn]C_5H_3$, respectively, are employed in conjunction with $M(CO)_{5}Br.$

A doctoral dissertation is concerned with the polymerization of vinylcymantrene, $(\pi-CH_2=CHC_5H_4)Mn(CO)_3$ [100], while a journal article deals with copolymerization of N-vinyl-2-pyrrolidone with vinylcymantrene in the presence of the initiator azobisisobutyronitrile [101].

Thioxanthate complexes of formula π -C₅H₅Mn(NO)(S₂CSR), obtained from [π -C₅H₅Mn(CO)₂(NO)]PF₆ and NaS₂CSR (R $\approx \underline{t}$ -C₄H₉, <u>sec</u>-C₄H₉, <u>n</u>-C₄H₉, <u>i</u>-C₃H₇,

and <u>n</u>-C₃H₇), have been shown by voltammetry to undergo a reversible oneelectron oxidation [102]. The dinuclear mercaptide complexes $[\pi$ -C₅H₅Mn(NO)SR]₂ (R = <u>t</u>-C₄H₉, <u>sec</u>-C₄H₉, and <u>i</u>-C₃H₇) can be oxidized in two one-electron steps. The cations $[\pi$ -C₅H₅Mn(NO)LL']⁺(L, L' = CO, $P(C_6H_5)_3$, $P(OC_6H_5)_3$, $P(CH_3)_2C_6H_5$, and 4-methylpyridine; LL' = dipy, <u>o</u>-phen, <u>inter alia</u>) also undergo a one-electron voltammetric oxidation process. Comparison of these voltammetric data and the $_{\nu}(NO)$ values indicates that the π -C₅H₅Mn(NO) group is significantly responsible for the redox behavior of the complexes.

The reaction between $(CH_3)_3SnCH_2CH=CH_2$ and $M(CO)_5X$ (M = Mn and Re, X = Cl and Br) has been employed in the synthesis of π -C₃H₅M(CO)₄ in good yields [103]. Prepared similarly have been the substituted π -allyl, π -C₅H₅, π -CH₃C₅H₄, π -indenyl, and π -fluorenyl carbonyls of manganese and rhenium.

Nucleophilic attack of X (X = H, OCH₃, OC₂H₅, <u>t</u>-OC₄H₉, N(CH₃)₂, CN, CH₃, and C₈H₅) at the cycloheptatriene ring of $[\pi$ -C₇H₈Mn(CO)₃]BF₄ has afforded the 6-<u>exo</u> isomers of $(\pi$ -XC₇H₈)Mn(CO)₃ (XLI) [104]. When X = OCH₃, OC₂H₅, or <u>t</u>-OC₄H₉, treatment of (XLI) with HBF₄ reverses the above reaction. Interaction between (XLI: X = H) and P(C₈H₅)₃ under photochemical conditions has yielded the phosphine derivative π -C₇H₈Mn(CO)₂P(C₈H₅)₃.

The reaction of C_7H_7COC1 with $Mn(CO)_5$ affords the acyl $C_7H_7COMn(CO)_5$

(XLII), which can be converted photochemically at -68° to π -C₇H₇Mn(CO)₃ (XLIII) [105]. The orange, air-stable (XLIII) exhibits only one proton signal in its NMR spectrum at 88° ; the limiting spectrum is obtained at -47° . The fluxional process in (XLIII) is slower than that in the isoelectronic iron + 1 ion, suggesting that the degree of backbonding is an important determinant of the rate of rotation.

A facile interconversion of arene- and cyanocyclohexadienylmanganese complexes has been reported by Mawby [106]. Treatment of $[\pi-(CH_3)_3C_6H_3]$ -Mn(CO)₃⁴I⁻ with NaCN in aqueous solution at 0^o leads to the formation of $[\pi-(CH_3)_3(Cn)C_0H_3]Mn(CO)_3$ (XLIV), which upon heating generates $[\pi-(CH_3)_3C_6H_3]Mn(CO)_2CN$ (XLV). The infrared spectrum of an aqueous solution of (XLV) is consistent with the presence of protonated $[\pi-(CH_3)_3C_6H_3]Mn(CO)_2CNH^+$ [107]. $\pi-C_6H_6Mn(CO)_2CN$ behaves similarly. Further evidence for the ability of (XLV) to act as a Lewis base is provided by its reactions with $(C_2H_5)_3O^+$ to yield $[\pi-(CH_3)_3C_6H_3]Mn(CO)_2CNC_2H_5^+$, with $(C_6H_5)_3C^+$ to give $[\pi-(CH_3)_3C_6H_3]Mn(CO)_2CNC(C_6H_5)_3^+$, and with HBF₄ to afford $[\pi-(CH_3)_3C_6H_3]Mn(CO)_2CNBF_3$. The two cations were isolated as their PF₆^- salts.

In a doctoral dissertation, Lewis [108] describes the reaction of $Re(CO)_{5}Br$ with methyl-substituted benzenes (Ar) to yield $[Re(CO)_{3}Br]_{3}Ar$. These compounds interact with $C_{5}H_{5}N$ or $P(C_{6}H_{5})_{3}$ (L) to give <u>fac</u>-Re(CO)_{3}L_{2}Br.

Several *n*-carborane and related derivatives of manganese and rhenium were reported during 1971. The preparation of $(\pi-CH_3C_3B_3H_5)Mn(CO)_3$, already published in 1969 (AS <u>6</u>, 1116), is given in a Ph.D. thesis [109]. The metallomonocarborane complexes $[(CH_3)_3NH]_2[(\pi-B_1cH_1cCH)_2Mn]$ (anion XLVI: R = H) and $[(CH_3)_4N]_2[(\pi-B_1cH_1cCNH_2)_2Mn]$ (anion XLVI: $R = NH_2$) were prepared by the reaction of $(CH_3)_3NHB_1cH_{12}CH$ or $B_1cH_{12}CNH_3$, respectively, with <u>n</u>-C₄H₃Li and MnCl₂ [110]. π -(3)-1,2-Divinyl-1,2-dicarbollylmanganese tricarbonylate ion (XLVII) was obtained [111] by the application of the procedure analogous to that reported (AS <u>5</u>, 630) for the unsubstituted analog. The polyhedral phosphaborane $B_1cH_{12}PC_6H_5$ upon treatment with 2 equiv. of NaH and 1 equiv. of Mn(CO)₅Br in THF yielded $[(\pi-B_1cH_1cPC_6H_5)Mn(CO)_3]^{-}$, which was isolated as the pale yellow, air-sensitive $(CH_3)_4N^+$ salt [112].

Kinetic and Stereochemical Studies

There was a significant increase in the number of mechanistic studies

of reactions of organometallic compounds of manganese and rhenium during 1971. Particularly noticeable has been a marked growth of interest in stereochemical problems.

Substitution reactions of metal carbonyls have continued to attract attention. In a Ph.D. thesis, Spendjian [113] describes isotopic CO exchange reactions of <u>cis</u>-Mn(CO)₄LBr (L = $P(C_6H_5)_3$, As(C_6H_5)₃, and Sb(C_6H_5)₃) and the kinetics of the thermal decomposition of <u>mer</u>(P's <u>trans</u>)-Mn(CO)₃[$P(C_6H_5)_3$]₂X (X = Cl, Br, and I) to <u>cis</u>-Mn(CO)₄[$P(C_6H_5)_3$]X (AS 2, 185-186).

The kinetics of the reaction:

$$Re(CO)_{5}X + P(C_{6}H_{5})_{3} \longrightarrow Re(CO)_{4}[P(C_{6}H_{5})_{3}]X + CO \qquad (11)$$
$$(X = C1, Br, or I)$$

were studied in $CHCl_3$, CCl_4 , and <u>n</u>-octane [114]. The substitution proceeds by a dissociative mechanism with the rate constants decreasing in the order: $Re(CO)_5Cl. > Re(CO)_5Br > Re(CO)_5I$ and the activation energies increasing from the chloride to the iodide. These compounds react about 60 times more slowly than their manganese counterparts.

Angelici [115] has prepared $\text{Re}(\text{CO})_{5}\text{NCO}$ via the reaction of $\text{Re}(\text{CO})_{6}^{+}$ with N₃ or NH₂NH₂. The pentacarbonyl reacts with L-L (L-L = <u>o</u>-phen, dipy, and (C₆H₅)₂PCH₂CH₂P(C₆H₅)₂) to give <u>fac</u>-Re(CO)₃(L-L)NCO. Kinetic studies on this reaction in toluene have shown a dissociative mechanism, ΔH^{+} being 23.5 kcal/mole and ΔS^{+} 1.8 e.u. At 60°, Re(CO)₅NCO undergoes substitution more rapidly than Re(CO)₅Cl.

The reaction:

 $(C_5H_5)_3MMn(CO)_5 + PR_3 \xrightarrow{\text{decalin}} \underline{\text{trans}} - (C_6H_5)_3MMn(CO)_4PR_3 + CO$ (12) (M = Ge or Sn, R = C_6H_5 or <u>n</u>-C_4H_9)

follows a two-term rate law of the type $k_1[C_6H_5)_3MMn(CO)_5] +$

 $k_2[(C_6H_5)_3MMn(CO)_5][PR_3]$ [116], suggesting two competing mechanisms in which the rate-determining steps involve slow fission of Mn-CO bonds and nucleophilic attack of L on the substrate.

The exchange of 13 CO with HMn(CO)₅ was followed by infrared spectroscopy [117] and, contrary to the previous report [118], found to proceed extremely slowly. At 40° in benzene, the radial: axial rate constant ratio is between 0.25 and 0.5.

The kinetics of the reaction:

$$[\operatorname{Re}(\operatorname{CO})_2(\operatorname{NO})\operatorname{Cl}_2]_2 + 2\operatorname{L} \longrightarrow \operatorname{2Re}(\operatorname{CO})_2(\operatorname{NO})\operatorname{LCl}_2$$
(13)

in CCl₄ and trichloroethylene were investigated by infrared spectroscopy [119]. The rates are first order both in complex and ligand concentrations, and $\Delta H^{\ddagger} = 11-15 \text{ kcal/mole whereas } \Delta S^{\ddagger} = -16 \text{ to } -30 \text{ e.u.}$ The rate constants decrease with decreasing polarizability of L in the order: $C_{S}H_{S}N >$ $3-ClC_{5}H_{4}N > 2-ClC_{5}H_{4}N \sim 4-ClC_{5}H_{4}N > 2-FC_{5}H_{4}N > 3-CNC_{5}H_{4}N$. A ratedetermining attack of L upon the dibridged or Cl-monobridged dirhenium complex is proposed.

The red, sublimable $CH_3COCOMn(CO)_5$ was synthesized by the reaction of pyruvoyl chloride with $NaMn(CO)_5$ [120]. It decarbonylates on heating in benzene solution to an equilibrium mixture of $CH_3COMn(CO)_5$ and $CH_3Mn(CO)_5$. The rate of its decarbonylation at 75° is 21 times slower than that of $CH_3COMn(CO)_5$; therefore, pyruvoyl-type structures cannot be intermediates in the substitution reactions of $CH_3COMn(CO)_5$.

M-C bond cleavage in the compounds \underline{trans} -RCH=C(R)Mn(CO)₅ (R = CF₃, CO₂CH₃, and CO₂H) with HMn(CO)₅ occurs with complete retention of configuration to yield the corresponding \underline{trans} -olefins and Mn₂(CO)₁₀ [121]. Reaction of \underline{trans} -CF₃CH=C(CF₃)Mn(CO)₅ with Br₂ occurs similarly with retention of configuration to give \underline{trans} -CF₃CH=C(CF₃)Br, whereas cleavage of the compound \underline{trans} -(HO₂C)CH=C(CO₂H)Mn(CO)₅ with Br₂ proceeds with complete inversion of configuration. <u>cis</u>-(CH₃O₂C)CH=CHMn(CO)₅ and \underline{trans} -(CH₃O₂C)CH=C(CO₂CH₃)Mn(CO)₅

react with Br_2 to give mixtures of the corresponding <u>cis</u>- and <u>trans</u>-bromoolefins. Various possible mechanisms of these reactions are considered. The stereochemistry of the reactions of $HMn(CO)_5$ with substituted acetylenes to afford the corresponding olefins has also been studied and is discussed.

Lack of stereospecificity in the reactions of $\underline{\operatorname{cis}}$ -CH₃Mn(¹²CO)₄(¹³CO) with X₂ or HX (X = Br or I) to yield Mn(¹²CO)₄(¹³CO)X has been communicated by Wojcicki, <u>et al.</u> [122]. These electrophilic cleavage reactions result in a statistical distribution of ¹³CO among the five positions of the product molecule. The insertion of SO₂ into $\underline{\operatorname{cis}}$ -CH₃Mn(¹²CO)₄(¹³CO) gives a substantial amount of $\underline{\operatorname{trans}}$ -CH₃SO₂Mn(¹²CO)₄(¹³CO) in addition to the $\underline{\operatorname{cis}}$ isomer.

By carrying out the following sequence of reactions:

$$D-(-)-C_{6}H_{5}CH(CH_{3})Br \xrightarrow{NaMn(CO)_{5}} C_{6}H_{5}CH(CH_{3})COMn(CO)_{4}P(C_{6}H_{5})_{3}$$

$$\xrightarrow{Br_{2}} D-(-)-C_{6}H_{5}CH(CH_{3})CO_{2}H \qquad (1)_{4})$$

Johnson and Pearson [125] have been able to demonstrate inversion (> 80_{β}) at α -carbon in nucleophilic attack of $Mn(CO)_5$ upon the alkyl bromide. Using this result in conjunction with the observation of inversion of configuration in the two-step process:

$$(-)-CH_{3}CH(CO_{2}C_{2}H_{5})Br \xrightarrow{Mn(CO)_{5}} CH_{3}CH(CO_{2}C_{2}H_{5})Mn(CO)_{5}$$

$$\xrightarrow{Br_{2}} (+)-CH_{3}CH(CO_{2}C_{2}H_{5})Br \qquad (15)$$

they concluded that the Br_2 cleavage of the manganese alkyl proceeds with retention (> 60%) at α -carbon.

In another paper concerned with cleavage of manganese-carbon bonds, Johnson and Pearson [124] describe a kinetic study of reactions between $CH_3COMn(CO)_5$ and various nucleophiles. With methoxide in CH_3OH , the reaction is first order in each reagent. The corresponding reaction of $CF_3COMn(CO)_5$ *References* p. 379 is much faster. Cleavage of $CH_3COMn(CO)_5$ with NaOH and NH_2OH in H_2O also occurs and has been studied; in contrast, no Mn-C bond scission takes place with imidazole, C_5H_5N , $C_6H_{11}NH_2$, NH_3 , HPO_4^{27} , F², CH₃CO₂, or NO₃. The kinetics of the acid cleavage of $CH_3COMn(CO)_5$ with HCl in CH_3OH were found to be consistent with the mechanism:

$$CH_{3}COMn(CO)_{5} + H^{+} \xleftarrow{[CH_{3}-C=Mn(CO)_{5}]^{+}} \xrightarrow{CH_{3}OH} products$$
(16)

Overall, the behavior of $CH_3COMn(CO)_5$ toward the above reagents resembles that of the organic amides. The rate of the reaction of $CH_3Mn(CO)_5$ with HCl in CH_3OH to give $Mn(CO)_5Cl$ and CH_4 is dependent on the acid concentration and is significantly increased by additions of KCl. Mercury(II) chloride cleaves $CH_3Mn(CO)_5$ about 10 times as rapidly as HCl; $Hg(O_2CCH_3)_2$ is even more reactive. Johnson's doctoral dissertation [125] treats the subject of the foregoing reactions in considerable detail.

 $Hg(ClO_4)_2$ and $Tl(ClO_4)_3$ readily displace $Mn(CO)_5^+$ from 3- and 4-pyridiniummethylmanganese pentacarbonyls in aqueous solution at 25⁰ [126]. These reactions are believed to proceed by an S_E^2 mechanism with an open, unbridged transition state. Added chloride slows down the rate of Mn-C bond scission. The reactivity of various Hg(II) and Tl(III) species in solution has been estimated.

An interesting reductive elimination reaction:

has been the subject of a kinetic study [127]. The rate-determining step is dissociation of the silane molecule; in hexane, $\Delta H^{\ddagger} = 29.2$ kcal/mole

and $\Delta S^{\ddagger} = 16.3$ e.u. The reaction is retarded by added $HSi(C_{6}H_{5})_{3}$; competition experiments indicate that $P(C_{6}H_{5})_{3}$ is 3.6 times as reactive as $HSi(C_{6}H_{5})_{3}$ toward the intermediate π - $C_{5}H_{5}Mn(CO)_{2}$. The kinetic isotope effect is small for both forward and back reactions: $\left(\frac{k_{H}}{k_{h}}\right)_{f} = 0.97$

and $\left(\frac{k_{\rm H}}{k_{\rm D}}\right)_{\rm b}$ = 1.06. π -C₅H₅Re(CO)₂(H)Si(C₆H₅)₃ reacts with P(C₆H₅)₃ at least 10⁶ more slowly than its manganese analog when allowance is made for a difference in temperature.

Kinetic studies of the racemization and epimerization of the optically-Lettive π -C₅H₅Mn(NO)[P(C₆H₅)₃](COOR) (R = CH₃ and C₁₀H₁₉) are the subject of two papers by Brunner [128, 129]. The enantiomeric π -C₅H₅Mn(NO)-[P(C₆H₅)₃](COOCH₃) were prepared by a transesterification of the diastereomeric menthyl derivatives (+)- and (-)- π -C₅H₅Mn(NO)[P(C₆H₅)₃](COOC₁₀H₁₉) and by reaction of (+)- and (-)-[π -C₅H₅Mn(CO)(NO)P(C₆H₅)₃]PF₆ with CH₃O⁻ [128]. The rates of the racemization and epimerization were followed by polarimetry and found to be only slightly solvent dependent [129]. Moreover, the alkyl group R exerts little influence on the rate of scission of the Mn-P(C₆H₅)₃ bond, which is the slow step of this reaction. For the R = CH₃ complex in benzene, t₁ at 30° is 170 min and E_a = 31.1 kcal/mole. The rate of the exchange of π -C₅H₅Mn(NO)[P(C₆H₅)₃](COOCH₃) with P(C₆D₅)₃ is equal to its rate of racemization [128].

The optically-active cymantrene $(\pi-C_4H_6OC_5H_3)Mn(CO)_3$ (XLVIII) does not undergo acid catalyzed racemization, in contrast to the behavior of optically-active acylferrocenes [130].

Hydrogen-deuterium exchange in $(\pi-RC_5H_4)Mn(CO)_2L$ has been investigated using CF₃CO₂D and D₂SO₄ [131, 132, 133]. For a series of R = H complexes, a correlation exists between the rate constant for the exchange and the Taft polar substituent constant of R in L = PR₃ [131]. At 27.7°, the exchange in $\pi-C_5H_5Mn(CO)_2L$ (L = $P(C_6H_5)_3$ and $P(OC_6H_5)_3$) is, respectively, 2000 and 70 times faster than that in $\pi-C_5H_5Mn(CO)_3$ [132]. Moreover, when L = CO, the R = $CH_2C_6H_5$ complex exchanges about 35 times faster than the R = H complex [133].

Miscellaneous Chemical Studies

Fhotopolymerization of a vinyl monomer initiated by $Mn_2(CO)_{10}$ in association with ethyl trichloroacetate is followed by a prolonged aftereffect if acetylacetone or cyclohexanone is used as a solvent [134]. These observations are consistent with unsymmetrical fission of $Mn_2(CO)_{10}$ on photolysis and subsequent reaction of $Mn(CO)_6$ with solvent to give a species of relatively long life which generates radicals by reaction with the halide.

Nuclear recoil reactions in organomanganese compounds have been studied by Wiles and associates [155]. Manganese atoms in neutron-irradiated π -C₅H₅Mn(CO)₃ often form HMn(CO)₅, whereas in (π -CH₃C₅H₄)Mn(CO)₃ they form both HMn(CO)₅ and CH₃Mn(CO)₅. In Mn(CO)₅I they primarily reform the original substance, whereas in Mn₂(CO)₁₀, a considerable proportion of them appear in the form of the Mn(CO)₅ radical. This radical was shown not to exchange with the Mn₂(CO)₁₀ matrix molecules and to decompose above 60⁰. Irradiation with neutrons of HMn(CO)₅, DMn(CO)₅, CH₃Mn(CO)₅, and C₆H₅Mn(CO)₅ leads to formation of H⁵⁶Mn(CO)₅ in all four cases, but in a much smaller quantity with the last two compounds [136].

A method is described [137] for the labelling of ${}^{*}Mn(CO)_{5}$ for use in exchange studies. Neutron-irradiated $HMn(CO)_{5}$ is treated with I₂ and $Mn_{2}(CO)_{10}$ in petroleum ether to give $Mn(CO)_{5}$ I; the yield of ${}^{56}Mn$ in this form is 20% of the total ${}^{56}Mn$. It has been shown that the exchange:

366

⁵⁶Mn(CO)₅I + HMn(CO)₅ \longrightarrow H⁵⁶Mn(CO)₅ + Mn(CO)₅I (18) is complete in < 30 sec at room temperature. In contrast, CH₃Mn(CO)₅ and C₆H₅Mn(CO)₅ are relatively inert to such an exchange with ⁵⁶Mn(CO)₅I. A method is also given for enrichment of ⁵⁶Mn by the Szilard-Chalmers reaction with neutron-irradiated Mn₂(CO)₁₀ [138].

Ion-molecule reactions have been described between π -C₅H₅Mn(CO)₃ and PF₃, AsF₃, SbF₃, or SF₄ (L) inserted into the ion source of a mass spectrometer [139]. They are of two types, depending on the excitation energy and the fluoride employed, and give the secondary ions [π -C₅H₅Mn(CO)L]⁺ and [π -C₅H₅MnL]⁺.

McCleverty, <u>et al.</u> [140] report on the voltametric oxidation of $(\pi-CH_3C_5H_4)Mn(CO)_2[C(OCH_3)R]$ (R = 1-ferrocenyl and C_8H_5) and $[\pi-C_5H_5Mn(NO)LL']^+$ (L,L' = PR₃, pyridines, and RNC; LL' = dipy, etc.). By employing a rotating Pt electrode in CH_2Cl_2 solution, it was shown that the carbene complexes undergo two one-electron oxidations, whereas the nitrosyl cations are oxidized in a one-electron step.

Catalytic Studies

A paper by Andrianov [141] is concerned with the catalytic action of π -C₅H₅Mn(CO)₃ on the isomerization of 2-methyl-1-pentene to 2-methyl-2pentene. π -C₅H₅Mn(CO)₃ also promotes addition of HSiCl₃ to isobutene.

The oligomerization of $C_{6}H_{5}C(CH_{3})=CH_{2}$ in CCl_{4} in the presence of $Mn_{2}(CO)_{10}$ has been studied at 95-150⁰ [142].

Polymeric catalysts containing phosphorus have been prepared by using $Re_2(CO)_{10}$ in conjunction with a polymer obtained from $C_6H_5PCl_2$ and poly(vinyl alcohol) [143].

X-Ray and Electron Diffraction Studies

The number of papers concerned with determination of structure of organometallic compounds of manganese and rhenium by diffraction methods

has quintupled in 1971 compared to 1970. Many of the articles mentioned in this section deal with both preparation and structure.

The molecules of $Mn(CO)_5Cl$ in the crystal exhibit small deviations from C_{4V} symmetry [144]. The Mn-C (ax) bond distance is 1.807 Å, whereas the Mn-C (eq) distance is 1.892-1.893 Å. In the substituted derivative cis-Mn(CO)₄[P(C₆H₅)₃]Cl, the Mn-C (<u>trans</u> to CO) distance is 1.84 Å, appreciably longer than the Mn-C (<u>trans</u> to Cl or P(C₆H₅)₃) distance, which is 1.75 Å [145]. This is consistent with the greater <u>trans</u>-effect of CO than Cl or P(C₆H₅)₃.

The complex $G_{10}H_{10}N_4O_5Mn_2$, prepared in the course of studies on $(C_5H_5)_3Mn_2(NO)_3$, was shown to possess structure (XLIX) [146]. The nitrosyl bridges are strikingly unsymmetrical (N-Mn(1) = 1.775 Å and N-Mn(2) = 1.943Å), suggesting that each NO donates two electrons to Mn(1) and one electron to Mn(2). The manganese-manganese distance of 2.526 Å is normal.

(XLIX)

The reaction between $Mn(CO)_5Br$ and NaN_3 in $H_2O-C_2H_5OH$ at 20° affords $Na[Mn_2(CO)_6(N_3)_3]$ [147]. The structure of the corresponding $(CH_3)_4N^+$ salt was determined by X-ray crystallography. In the anion (L) each azide bridges through one nitrogen, the Mn-N-Mn separation is 2.893 Å, identical within experimental error to the Mn-Mn bond length in $Mn_2(CO)_{10}$ [148]. The synthesis of several other azido and isocyanato complexes of manganese and rhenium is also provided.

The complex $C_8H_5N=CHC_8H_4Mn(CO)_4$ (LI), prepared from $CH_3Mn(CO)_5$ and benzylideneaniline, has been the subject of a crystallographic study [149]. The Mn-C and Mn-N bond distances in the chelate ring are almost identical.

Photochemical reaction between $Mn_2(CO)_{10}$ and $(CH_3)_2AsC = CAs(CH_3)_2CF_2CF_2$ (f₄fars) yields (f₄fars)[Mn(CO)₄]₂ (LII), whose structure has been elucidated by X-ray crystallography [150]. The reaction of (LII) with iodine affords (f₄fars)[Mn(CO)₄I]₂; preliminary structural results on this product are also reported.

Molecular structures have been determined of two dithiocarboxylato complexes of rhenium(I). In the compound $C_6H_5CS_2Re(CO)_4$, the Re-S distance is 2.49 Å [151], whereas in $HCS_2Re(CO)_2[P(C_6H_5)_3]_2$ (LIII), prepared from $HRe(CO)_2[P(C_6H_5)_3]_3$ and CS_2 [66], the Re-S distances are 2.500 and 2.532 Å [152].

The sulfinate CH₃SO₂Mn(CO)₃(dipy) has been shown [153] to adopt structure (LIV); this confirms the previously made assignment of molecular geometry and Mn-S bonding from infrared spectral data [154].

The crystal structure of $(CH_3)_4N[\pi-C_5H_5Mn(CO)_2COC_6H_5]$ (anion LV) shows the Mn-C (acyl or carbene) bond distance to be 1.96 Å [155], slightly shorter than that expected for an Mn-C single bond.

(LV)

The transition metal ylide $Mn(CO)_4[C_2P(C_6H_5)_3]Br$, whose preparation was reported last year (AS 2, 175-174), has been shown to possess structure (INI) [156]. The C=C bond distance of 1.20 Å, essentially acetylenic, prompts formulation of the $(C_6H_5)_3PC_2$ ligand as a phosphonium acetylide.

The structures of two previously-mentioned [81] isomeric complexes Mn(CO)₄[(C_{6H_5})₂PC₀H₄C₂H₃CH₃] (LVII and LVIII) have been elucidated by X-ray crystallography [157]. (LVII) contains a π -oxopropyl group which is essentially symmetrically bonded to the manganese.

The first recognized example of an open-chain π -pentadienyl complex of manganese, $C_{17}H_{11}MnO_5$ (LIX), results when $Mn_2(CO)_{10}$ reacts with tropone [158]. The molecular structure of this purple solid contains a nearly planar carbon framework with approximately equal C-C distances of the dienyl group.

The structure of $Br_3GeMn(CO)_5$ (AS 2, 188) was determined by gas-phase electron diffraction [159]. The equatorial CO's are bent toward the germanium and the Mn-Ge distance is 2.43 Å.

Single-crystal X-ray diffraction studies have established that $Hg[Mn(CO)_5]_2$ is centrosymmetric and has approximate D_{4h} symmetry [160]. Again the equatorial CO's are bent inwards, toward the mercury by 5.3°.

Ultraviolet irradiation of a hexane solution of π -C₅H₅Re(CO)₃ affords yellow (π -C₅H₅)₂Re₂(CO)₅ (LX), whose structure was elucidated by crystallography [161]. The rheniums are held together by a symmetrically bridging CO and by a long Re-Re bond of 2.957 Å.

The reaction between $CH_3Mn(CO)_5$ and $(\pi-C_5H_5)_2MOH_2$ in warm benzene affords $C_{15}H_9O_5MOMn$ (IXI), which is moderately stable to air in the solid, and whose structure has been determined by X-ray methods [162]. An unusual feature of the molecule is a very short Mo-Mn bond distance of 2.961 Å. $CH_3Mn(CO)_5$ undergoes a similar reaction with $(\pi-C_5H_5)_2WH_2$ and $(\pi-C_5H_5)_2ReH$, the product of the latter interaction probably containing hydrogen instead of a CO group bonded to rhenium.

The air-stable, diamagnetic complex $(\pi-C_5H_5)_2\text{Re}_2Mo_2(\text{CO})_{11}\text{S}_2$ (IXII), obtained from $\{\text{Re}(\text{CO})_4[\text{SSn}(\text{CH}_3)_3]\}_2$ and $\pi-C_5H_5MO(\text{CO})_3\text{Cl}$ in benzene or 1,2dimethoxyethane at 75°, has been investigated crystallographically [163]. A nonlinear trimuclear metal framework and presence of both triply-bridging, four-electron donating, and quadruply bridging, six-electron donating sulfurs are some of the salient features of this structure.

A doctoral dissertation is concerned with several structures; among them is that of $HRe_3(CO)_{14}$, in which the Re_3 fragment possesses a <u>cis</u> configuration [164].

In the molecular nitrogen complex $\underline{\text{trans}}$ -Re[P(CH₃)₂C₆H₅]₄(N₂)Cl, whose structure was examined by X-ray crystallography, the Re-N-N molety is essentially linear [165].

Electronic Spectra and Structures

The electronic spectra of $M(CO)_5 X$ (M = Mn and Re, X = Cl, Br, I, H, CH₃, and CF₃) have been investigated in the range 5000-1900 Å [166]. Band assignments have been made and qualitative molecular orbital energy diagrams are given to account for charge-transfer bands. The electronic structures of $M(CO)_5 X$ (M = Mn and Re, X = Cl, Br, and I) have been also discussed by application of the self-consistent charge and configuration molecular orbital method [167]. The relative reactivities of these pentacarbonyls to CO substitution were found to correlate with M-C overlap populations in a satisfactory manner.

Molecular orbital calculations have been made to determine the bonding characteristics of CO and CN⁻ in the isoelectronic series $Mn(CO)_8^+$, $Mn(CO)_5CN$, $[Mn(CN)_5CO]^4^-$, and $Mn(CN)_6^5^-$ [168]. Trends in carbonyl bonding can be attributed essentially to variations in π -acceptor ability, whereas the bonding of cyanide appears to be a function of both σ -donor and π -acceptor abilities which vary according to the total intramolecular environment.

The polarized electronic spectra of $Mn_2(CO)_{10}$ and $M_2Fe(CO)_{14}$ (M = Mn or Re) are reported in a Ph.D. thesis [169]. The nature of the metal-metal bond in $M_2(CO)_{10}$ (M_2 = Mn_2 , Re₂, Tc₂, and MnRe) has been described by application of the self-consistent charge and configuration molecular orbital method [170]. An important contribution to the M-M bond energy is that from the cross-interaction between a metal atom and ligands directly bonded to the other metal atom.

Molecular core binding energies have been measured for some organometallic compounds, including π -C₅H₅Mn(CO)₃ [171]. Electron transfer from the ring to the CO groups <u>via</u> the metal orbitals is clearly discernible and the C_{1S} and O_{1S} levels for the CO groups are shifted considerably to lower binding energy compared with Cr(CO)₅, Fe(CO)₅, or Ni(CO)₄.

The ionization potentials of π -C₅H₅Mn(CO)₂PX₃ increase as a function of

X in the order X = H < Br < Cl < F, reflecting a decrease in the donor properties of PX_3 [172]. The compound π -C₅H₅Mn(CO)₂PF₃ was prepared for the first time, photochemically.

The complex $[Mn(CNCH_3)_6]I$ and the dipositive $[Mn(CNCH_3)_6]^{2+}$ have been investigated according to the self-consistent charge and configuration molecular orbital method with the aim of interpreting the electronic spectra [173].

Vibrational Spectra

Spectroscopic evidence has been presented [174] which casts doubt on the original formulation (AS 9, 162) of $M(CO)_3(dinitrile)X$ (M = Mn and Re, X = Cl and Br) as π -bonded dinitrile complexes. It appears now that the band at 2066 cm⁻¹ in the infrared spectrum of $Mn(CO)_3[NC(CH_2)_2CN]Br$, assigned previously to $_V(CN)$, is actually due to a CO stretching mode. The authors propose to reformulate these complexes as (IXIII).

The previously reported [175] infrared spectra in the $_{\nu}(CO)$ region of π -C₅H₅W(CO)₃Mn(CO)₅ and MnRe(CO)₁₀ have been found [176] to be in error. It appears that π -C₅H₅W(CO)₃Mn(CO)₅ had partially reacted with the solvent CCL₄, whereas ''MnRe(CO)₁₀'' was a mixture of Mn₂(CO)₁₀ and Re₂(CO)₁₀. The infrared spectrum of π -C₅H₅Mn(CO)₂[C(OCH₃)C₆H₅] in hexane shows

 $4_{\rm V}(\rm CO)$ bands indicating presence of isomers; in contrast, the spectrum of $(\pi-\rm CH_3C_5H_4)Mn(\rm CO)_2[C(\rm OCH_3)CH_3]$ exhibits only 2 CO stretching absorptions [177].

There were many studies of the vibrational spectra of various types of carbonyl compounds of manganese and rhenium that dealt with the assignment of bands, calculation of force constants, and analysis of the absolute intensities. The infrared and Raman spectra of $Mn(CO)_5Br$ and $Mn_2(CO)_{1O}$ have been recorded and assignments of bands made with the aid of isotopic substitution [178]. Another doctoral dissertation [179] is concerned with the Raman spectra, force constants from an approximate normal coordinate analysis, and Raman intensities of the complexes $(CH_3)_3M^*M(CO)_5$ (M = Mn and Re, M' = Ge and Sn).

An assignment of bands has been made [180] in the vibrational spectra of $\text{Re}(\text{CO})_5 X$ (X = Cl and Br). By using an approach described earlier (AS 2, 190-191), Delbeke, <u>et al.</u> [181] have calculated CO stretching force constants for a variety of $\text{Mn}(\text{CO})_5 X$ complexes (X = SnR₃, SnR₂Cl, COR, etc.). These force constants were then used to obtain σ and π Graham parameters.

Available data on the absolute infrared intensities of v(CO) of $M(CO)_5X$ (M = Mn and Re, X = Cl, Br, or I) have been analyzed [182].

The infrared spectra in the 2200-60 cm⁻¹ region have been investigated for X_3 SnMn(CO)₅ (X = Cl, Br, CH₃, or C₆H₅) [183]. Normal coordinate analyses of the first three complexes using a modified Urey-Bradley forcefield showed that the force constants for the Mn-Sn stretch decrease with X as: Cl > Br > CH₃.

The Raman spectra and normal coordinate analyses are reported in a Ph.D. thesis [184] for $Mn_2(CO)_{10}$, $Tc_2(CO)_{10}$, $Re_2(CO)_{10}$, and $MnRe(CO)_{10}$. Also given are the absolute Raman intensities and molecular polarizability derivatives for the M-M stretching modes of $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$. Raman data are presented [185] for solutions, powders, and oriented single crystals of $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ which allow a consistent assignment of the vibrational spectra.

The infrared and Raman spectra of the linear $Mn_2Fe(CO)_{14}$, $Re_2Fe(CO)_{14}$, and $MnFeRe(CO)_{14}$ have been examined in the 2200-1800 cm⁻¹ region and a tentative assignment of the v(CO) modes proposed [186].

Inelastic neutron scattering spectroscopy has been applied to assign molecular structures and force fields for $H_3M_3(CO)_{12}$ (M = Mn or Re) [187].

Three papers were concerned with vibrational spectra of π -C₅H₅Mn(CO)₃ and derivatives. The infrared spectra of $(\pi$ -CH₃C₅H₄)Mn(CO)₂L (L = P(C₆H₅)₃, As(C₆H₅)₃, and Sb(C₆H₅)₃) have been investigated in the regions 2100-1850 and 700-225 cm⁻¹ [188]. Absorption bands due to vibrations of the $(\pi$ -ring)Mn(CO)₂ moiety have been assigned. The infrared and Raman spectra of solid π -C₅H₅Mn(CO)₃ in the 3000 cm⁻¹ region have been investigated [189]; factor-group splitting is observed and the correlation between this and the crystal structure has been considered. The relative Raman intensities and the depolarization behavior for the A₁ and E $_{\rm V}$ (CO) modes in π -C₅H₅Mn(CO)₃ differ considerably from those of π -C₆H₆Cr(CO)₃; this observation is interpreted in terms of a bond-derived polarizability model [190].

NMR, NQR, and Mössbauer Studies

The ¹H NMR spectra of *n*-cycloheptadienylmanganese tricarbonyl and its 6-<u>exo</u>-methoxy and 6-<u>exo</u>-methyl derivatives have been analyzed in some detail [191]. It appears that the skeleton of the ring carbons in the two derivatives lacks a plane of symmetry.

The ¹H NMR spectrum of π -C₅H₅Mn(CO)₃ oriented in the liquid crystalline nematic phase has been reported [192].

Presented by Stewart in his doctoral dissertation [193] are the 19 F NMR spectra of <u>m</u>- and <u>p</u>-fluorophenyl derivatives of manganese carbonyl. The CO stretching frequencies of these and related compounds are also given.

377

Onaka and coworkers [194,195] have investigated the electronic configuration around the tin atom in a series of $(R_{3-x}X_{x}Sn)Mn(CO)_{5}$ complexes $(R = CH_{3} \text{ or } C_{6}H_{5}, X = Cl \text{ or } Br)$ by ¹H and ⁵⁵Mn NMR and ¹¹⁹Sn Mössbauer spectroscopy. The results obtained indicate that the $Mn(CO)_{5}$ group is a stronger electron donor than CH_{3} , $C_{6}H_{5}$, or halogen [194]. The ⁵⁵Mn NMR data further show that in the series of $[(CH_{3})_{3-x}Br_{x}Sn]Mn(CO)_{5}$ pentacarbonyls, $Mn = Sn \pi$ -interaction is most pronounced for $Br_{3}SnMn(CO)_{5}$ [195].

Single crystals of $Mn(CO)_5 X$ (X = Cl, Br, and I) and π -C₅H₅Mn(CO)₃ were studied by broadline NMR spectroscopy at room temperature [196]. For $Mn(CO)_5 X$, the ⁵⁵Mn quadrupole coupling constant increases in the order: X = Cl < Br < I. The anisotropic chemical shifts of ⁵⁵Mn in these four complexes were also determined.

The room temperature ⁵⁵Mn NQR spectra have been recorded [197] for 14 different ring-monosubstituted and one ring-disubstituted derivatives of π -C₅H₅Mn(CO)₃. An attempt was made to correlate the Mn resonance frequencies with infrared, NMR, and UV data which measure variations in the ring π -electron density.

Thermodynamic Studies

Temperature dependence of vapor pressures, heats and entropies of fusion and sublimation, melting points, and other thermodynamic data have been obtained for $Mn_2(CO)_{10}$ [198,199], $Re_2(CO)_{10}$, $MnRe(CO)_{10}$ [199], and π -C₅H₅Mn(CO)₃ [200].

Applications to Technology

A U.S. patent is concerned with the use of $(\pi-CH_3C_5H_4)Mn(CO)_3$ as an additive to natural gas fuel [201]. Another patent reports that addition of C_8H_5NSO to a π -cyclopentadienylmanganese tricarbonyl (used as a smoke-repressing agent) in jet fuel reduces manganese-containing deposits in the engine [202].

The use of $(\pi$ -CH₃C₅H₄)Mn(CO)₃ as a photosensitizer for the lightinduced cure of epoxy resins has been described [205].

Acknowledgment

Research in the field of organometallic compounds of the manganese triad elements conducted in the author's laboratories has been supported generously by the National Science Foundation.

REFERENCES

- 1. B.C. Benson and K.K. Joshi, Brit. 1,238,961; Chem. Abstr., <u>75</u> (1971) 78728m.
- 2. M. Usami, K. Nishimura and Y. Koga, Japan 71 02,411; Chem. Abstr., <u>75</u> (1971) 65737p.
- M. Usami, K. Nishimura and Y. Koga, Japan 70 33,536; Chem. Abstr., <u>74</u> (1971) 55825f.
- 4. A.V. Medvedeva and D.M. Ryabenko, Zh. Neorg. Khim., <u>16</u> (1971) 263; Chem. Abstr., <u>74</u> (1971) 71112b.
- 5. K. Moedritzer, Synth. Inorg. Metal-org. Chem., 1 (1971) 63.
- M. Freni, P. Romiti and D. Giusto, Atti. Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Natur., Rend., <u>49</u> (1970) 420; Chem. Abstr., <u>75</u> (1971) 58152r.
- 7. D.P. Keeton, Dissertation Abstr., 32 (1971) 3237-B.
- F. Zingales, A. Trovati, F. Cariati and P. Uguagliati, Inorg. Chem., <u>10</u> (1971) 507.
- 9. J.G. Dunn and D.A. Edwards, J. Organometal. Chem., <u>27</u> (1971) 73.
- J.T. Moelwyn-Hughes, A.W.B. Carner and A.S. Howard, J. Chem. Soc. A, (1971) 2361.
- 11. J.T. Moelwyn-Hughes, A.W.B. Garner and A.S. Howard, J. Chem. Soc. A, (1971) 2370.
- 12. A. Bond and M. Green, J. Chem. Soc. A, (1971) 682.
- 13. J. Chatt, J.R. Dilworth, G.J. Leigh and V.D. Gupta, J. Chem. Soc. A, (1971) 2631.
- 14. M.D. Hobday and T.D. Smith, J. Chem. Soc. A, (1971) 3424.
- 15. D. Ostfeld, M. Tsutsui, C.P. Hrung and D.C. Conway, J. Amer. Chem. Soc., <u>93</u> (1971) 2548.
- 16. C.A. Udovich, Dissertation Abstr., <u>30</u> (1970) 4961-B.
- 17. W.J. Miles, Jr., Dissertation Abstr., 31 (1971) 5242-B.

18.	R.B. King and A. Efraty, J. Amer. Chem. Soc., <u>93</u> (1971) 5260.
19.	J.R. Miller and D.H. Myers, Inorg. Chim. Acta, 5 (1971) 215.
20.	A.G. Osborne and M.H.B. Stiddard, J. Chem. Soc. A, (1964) 634.
21.	F.A. Hartman and A. Wojcicki, Inorg. Chim. Acta, <u>2</u> (1968) 351.
22.	J.T. Moelwyn-Hughes, A.W.B. Garner and N. Gordon, J. Organometal. Chem., <u>26</u> (1971) 373.
23.	R.B. King, P.N. Kapoor and R.N. Kapoor, Inorg. Chem., <u>10</u> (1971) 1841.
24.	R.B. King, P.N. Kapoor, M.S. Saran and R.N. Kapoor, Inorg. Chem., <u>10</u> (1971) 1851.
25.	R.B. King and M.S. Saran, Inorg. Chem., <u>10</u> (1971) 1861.
26.	P.S. Elmes and B.O. West, J. Organometal. Chem., <u>32</u> (1971) 365.
27.	J. Grobe and F. Kober, J. Organometal. Chem., 29 (1971) 295.
28.	W. Ehrl and H. Vahrenkamp, Chem. Ber., 104 (1971) 3261.
29.	B. Chiswell, R.A. Plowman and K. Verrall, Inorg. Chim. Acta, <u>5</u> (1971) 579.
30.	R. Schumann and H.J. Kroth, J. Organometal. Chem., 32 (1971) C47.
31.	R.H. Reimann and E. Singleton, J. Organometal. Chem., 32 (1971) C44.
32.	A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova and A.A. Ioganson, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 1838; Chem. Abstr., <u>75</u> (1971) 157749x.
33.	E. Lindner and R. Grimmer, J. Organometal. Chem., <u>31</u> (1971) 249.
34.	A. Trovati, P. Uguagliati and F. Zingales, Inorg. Chem., 10 (1971) 851.
35.	E. Lindner and K.M. Matejcek, J. Organometal. Chem., 29 (1971) 283.
36.	H. Vahrenkamp, J. Organometal. Chem., <u>28</u> (1971) 167.
37.	D.T. Haworth and E.S. Matushek, Inorg. Nucl. Chem. letters, <u>7</u> (1971) 261.
38.	P.M. Treichel, J.P. Stenson and J.J. Benedict, Inorg. Chem., <u>10</u> (1971) 1183.
39.	J. Chatt, R.C. Fay and R.L. Richards, J. Chem. Soc. A, (1971) 702.
40.	A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova and V.N. Khandozhko, Izv. Akad. Nauk SSSR, Ser. Knim., (1971) 462; Chem. Abstr., <u>75</u> (1971) 20543f.

41. A.J. Cleland, S.A. Fieldhouse, B.H. Freeland and R.J. O'Brien, Chem. Commun., (1971) 155.

42.	B.K. Nicholson and J. Simpson, J. Organometal. Chem., 32 (1971) C29.
43.	J.K. Ruff, Inorg. Chem., <u>10</u> (1971) 409.
44.	W. Jetz and W.A.G. Graham, Inorg. Chem., <u>10</u> (1971) 4.
45,	W. Jetz and W.A.G. Graham, Inorg. Chem., <u>10</u> (1971) 1647.
46.	H.C. Clark and B.K. Hunter, J. Organometal. Chem., 31 (1971) 227.
47.	E.P. Ross, R.T. Jernigan and G.R. Dobson, J. Inorg. Nucl. Chem., <u>33</u> (1971) 3375.
48.	T.J. Marks and A.M. Seyam, J. Organometal. Chem., <u>31</u> (1971) C62.
49.	A.T.T. Hsieh and M.J. Mays, Inorg. Nucl. Chem. Letters, 7 (1971) 223.
50.	A.T.T. Hsieh and M.J. Mays, Chem. Commun., (1971) 1234.
51.	H.J. Haupt and F. Neumann, J. Organometal. Chem., <u>33</u> (1971) C56.
52.	A.T.T. Hsieh and M.J. Mays, J. Chem. Soc. A, (1971) 729.
53.	A.T.T. Hsieh and M.J. Mays, J. Chem. Soc. A, (1971) 2648.
54.	T.A. George, J. Organometal. Chem., <u>33</u> (1971) C13.
55.	D.S. Field and M.J. Newlands, J. Organometal. Chem., 27 (1971) 221.
56.	M.J. Ash, A. Brookes, S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. A, (1971) 458.
57.	S.A.R. Knox and F.G.A. Stone, J. Chem. Soc. A, (1971) 2874.
58.	F. Faraone, S. Sergi and R. Pietropaolo, Atti. Soc. Peloritana Sci. Fis. Mat. Natur., <u>14</u> (1968) 319; Chem. Abstr., <u>74</u> (1971) 18854u.
59.	A.T.T. Hsieh and J. Knight, J. Organometal. Chem., 26 (1971) 125.
60.	R.L. Bennett, M.I. Bruce and F.G.A. Stone, J. Organometal. Chem., <u>26</u> (1971) 355.
61.	E.W. Abel, R.A.N. Mclean and S. Moorhouse, Inorg. Nucl. Chem. Letters, <u>7</u> (1971) 587.
62.	K. Yasufuku and H. Yamazaki, J. Organometal. Chem., 28 (1971) 415.
63.	H.D. Kaesz, S.A.R. Knox, J.W. Koepke and R.B. Saillant, Chem. Commun., (1971) 477.
64.	G.O. Evans, J. Slater, D. Giusto and R.K. Sheline, Inorg. Nucl. Chem. Letters, <u>7</u> (1971) 771.
65.	J. Knight and M.J. Mays, Chem. Commun., (1971) 62.
66.	M. Freni, D. Giusto and P. Romiti, J. Inorg. Nucl. Chem., <u>33</u> (1971) 4093.

- 67. R.C. Dobbie, J. Chem. Soc. A, (1971) 230.
- 68. B. Wozniak, J.D. Ruddick and G. Wilkinson, J. Chem. Soc., (1971) 3116.
- 69. C.P. Casey and R.L. Anderson, J. Amer. Chem. Soc., <u>93</u> (1971) 3554.
- 70. D.A. Owen, J.C. Smart, P.M. Garrett and M.F. Hawthorne, J. Amer. Chem. Soc., <u>93</u> (1971) 1362.
- L. I. Zakharkin and L.V. Orlova, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 1847; Chem. Abstr., <u>75</u> (1971) 140918d.
- S.E. Jacobson, P. Reich-Rohrwig and A. Wojcicki, Chem. Commun., (1971) 1526.
- 73. E. Lindner end R. Grimmer, Chem. Ber., <u>104</u> (1971) 544.
- 74. J.E. Thomasson, P.W. Robinson, D.A. Ross and A. Wojcicki, Inorg. Chem., 10 (1971) 2130.
- M.R. Churchill, J. Wormald, D.A. Ross, J.E. Thomasson and A. Wojcicki, J. Amer. Chem. Soc., <u>92</u> (1970) 1795.
- 76. W.D. Bannister, B.L. Booth, R.N. Haszeldine and P.L. Loader, J. Chem. Soc. A, (1971) 930.
- 77. D.W. Lichtenberg and A. Wojcicki, J. Organometal. Chem., 33 (1971) C77.
- A.N. Nesmeyanov, M.I. Rybinskaya, L.V. Rybin, V.S. Kaganovich and P.V. Petrovskii, J. Organometal. Chem., <u>31</u> (1971) 257.
- A.N. Nesmeyanov, V.S. Kaganovich, L.V. Rybin, P.V. Petrovskii and M.I. Rybinskaya, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 1576; Chem. Abstr., <u>75</u> (1971) 88738d.
- 80. M.A. Bennett and R. Watt, Chem. Commun., (1971) 94.
- 81. M.A. Bennett and R. Watt, Chem. Commun., (1971) 95.
- 82. M. Tamura and J. Kochi, J. Organometal. Chem., 29 (1971) 111.
- 83. A. Santos Macias, An. Quim., <u>67</u> (1971) 499; Chem. Abstr., <u>75</u> (1971) 98656q.
- 84. R.E. Banks, R.N. Haszeldine, M. Lappin and A.B.P. Lever, J. Organometal. Chem., <u>29</u> (1971) 427.
- 85. R.B. King and A. Efraty, J. Fluorine Chem., 1 (1971/72) 283.
- 86. M. Herberhold and W. Golla, J. Organometal. Chem., 26 (1971) C27.
- 87. J. Miller and K. Fenderl, Angew. Chem. Internat. Edn., 10 (1971) 418.
- H. Schumann, O. Stelzer, J. Kuhlmey and U. Niederreuther, J. Organometal. Chem., <u>28</u> (1971) 105.
- 89. M. Herberhold and H. Brabetz, Z. Naturforsch., 26b (1971) 656.

90.	D.M.	Roe	and	A. G.	Massey,	J.	Organometal.	Chem.,	<u>28</u>	(1971)). 273.
-----	------	-----	-----	-------	---------	----	--------------	--------	-----------	--------	---------

- 91. D.N. Kursanov, V.N. Setkina, A.G. Ginzburg, M.N. Nefedova and A.I. Khatami, Izv. Akad. Nauk SSSR, Ser. Khim., (1970) 2412; Chem. Abstr., <u>75</u> (1971) 49292j.
- 92. A.N. Nesmeyanov, D.N. Kursanov, V.N. Setkina, V.D. Vil'chevskaya, N.K. Baranetskaya, A.I. Krylova and L.A. Glushchenko, Dokl. Akad. Nauk. SSSR, <u>199</u> (1971) 1336 (719 Engl. Transl.)
- 93. S.S. Sandhu and A.K. Mehta, Inorg. Nucl. Chem. Letters, 7 (1971) 891.
- 94. D. Sellmann, Angew. Chem. Internat. Edn., 10 (1971) 919.
- 95. M. Höfler and M. Schnitzler, Chem. Ber., 104 (1971) 3117.
- 96. J-Y. Chenard, D. Commercuc and Y. Chauvin, C.R. Acad. Sci. Paris, Ser. C, <u>273</u> (1971) 1469.
- 97. R.B. King and A. Efraty, J. Amer. Chem. Soc., 93 (1971) 4950.
- 98. E.W. Abel and S. Moorhouse, J. Organometal. Chem., 28 (1971) 211.
- 99. E.W. Abel and S. Moorhouse, J. Organometal. Chem., 29 (1971) 227.
- 100. J.C. Lai, Dissertation Abstr., 31 (1971) 5918-B.
- 101. C.U. Pittman, Jr., and P.L. Grube, J. Polymer Sci., A-1, 2 (1971) 3175.
- 102. P. Hydes, J.A. McCleverty and D.G. Orchard, J. Chem. Soc. A, (1971) 3660.
- 103. E.W. Abel and S. Moorhouse, Angew. Chem. Internat. Edn., <u>10</u> (1971) 339.
- 104. F. Haque, J. Miller, P.L. Pauson and J.B.Pd. Tripathi, J. Chem. Soc. C, (1971) 743.
- 105. T.H. Whitesides and R.A. Budnik, Chem. Commun., (1971) 1514.
- 106. P.J.C. Walker and R.J. Mawby, Inorg. Chem., <u>10</u> (1971) 404.
- 107. P.J.C. Walker and R.J. Mawby, J. Chem. Soc. A, (1971) 3006.
- 108. H.C. Lewis, Jr., Dissertation Abstr., 32 (1971) 1428-B.
- 109. J.W. Howard, Jr., Dissertation Abstr., <u>31</u> (1971) 5861-B.
- 110. W.H. Knoth, Inorg. Chem., <u>10</u> (1971) 598.
- 111. D.A.T. Young, T.E. Paxson and M.F. Hawthorne, Inorg. Chem., <u>10</u> (1971) 786.
- 112. J.L. Little and A.C. Wong, J. Amer. Chem. Soc., <u>93</u> (1971) 522.
- 113. H.K. Spendjian, Dissertation Abstr., <u>32</u> (1971) 2587-B.

114.	D.A. Brown and R.T. Sane, J. Chem. Soc. A, (1971) 2088.
115.	R.J. Angelici and G.C. Faber, Inorg. Chem., 10 (1971) 514.
116.	G.R. Dobson and E.P. Ross, Inorg. Chim. Acta, 5 (1971) 199.
117.	A. Berry and T.L. Brown, J. Organometal. Chem., 33 (1971) C67.
118.	F. Basolo, A.T. Brault and A.J. Poe, J. Chem. Soc., (1964) 676.
119.	F. Zingales, A. Trovati and P. Uguagliati, Inorg. Chem., 10 (1971) 510.
120.	C.P. Casey and C.A. Bunnell, J. Amer. Chem. Soc., <u>93</u> (1971) 4077.
121.	B.L. Booth and R.G. Hargreaves, J. Organometal. Chem., 33 (1971) 365.
122.	P.W. Robinson, M.A. Cohen and A. Wojcicki, Inorg. Chem., 10 (1971) 2081.
123.	R.W. Johnson and R.G. Pearson, Chem. Commun., (1970) 986.
124.	R.W. Johnson and R.G. Pearson, Inorg. Chem., 10 (1971) 2091.
125.	R.W. Johnson, Dissertation Abstr., 31 (1971) 5861-B.
126.	D. Dodd, M.D. Johnson and N. Winterton, J. Chem. Soc. A, (1971) 910.
127.	A.J. Hart-Davis and W.A.G. Graham, J. Amer. Chem. Soc., <u>93</u> (1971) 4388.
128.	H. Brunner and H.D. Schindler, Z. Naturforsch., <u>26b</u> (1971) 1220.
129.	H. Brunner and HrD. Schindler, Chem. Ber., <u>104</u> (1971) 2467.
130.	H. Falk, H. Lehner, J. Paul and U. Wagner, J. Organometal. Chem., <u>28</u> (1971) 115.
131.	A.G. Ginzburg, V.N. Setkina and D.N. Kursanov, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 177; Chem. Abstr., <u>75</u> (1971) 19505p.
132.	V.N. Setkina, A.G. Ginzburg, N.V. Kislyakova and D.N. Kursanov, Izv. Akad. Nauk SSSR, Ser. Khim., (1971) 434; Chem. Abstr., <u>75</u> (1971) 34994r.
133.	M.N. Nefedova, V.N. Setkina, A.I. Khatami, A.G. Ginzburg and D.N. Kursanov, Dokl. Akad. Nauk SSSR, <u>198</u> (1971) 889; Chem. Abstr., <u>75</u> (1971) 75711q.
134.	C.H. Bamford and J. Paprotny, Chem. Commun., (1971) 140.
135.	I.G. De Jong, S.C. Srinivasan and D.R. Wiles, J. Organometal. Chem., <u>26</u> (1971) 119.
726	W Tolshinok C C Sminiuscen and D D Wiles Canad T Cham 10

- 130. H. Jakubinek, S.C. Srinivasan and D.R. Wiles, Canad. J. Chem., <u>49</u> (1971) 2175.
- 157. S.C. Srinivasan and D.R. Wiles, Chem. Commun., (1971) 1633.
- 158. P. Reichold and P. Wolf, Radiochim. Acta, 15 (1971) 1.

MANG	ANESE, TECHNETIUM AND RHENIUM 385
139.	J. Muller and K. Fenderl, Chem. Ber., <u>104</u> (1971) 2207.
140.	J.A. McCleverty, G.D. Orchard, J.A. Connor, E.M. Jones, J.P. Lloyd and P.D. Rose, J. Organometal. Chem., <u>30</u> (1971) C75.
141.	K.A. Andrianov, O.M. Rad'kova, S.A. Golubtsov and N.G. Morozov, Zhur. Obsh. Khim., <u>41</u> (1971) 1569 (1574 Engl. Transl.)
142.	W. Strohmeier and H. Grübel, Z. Naturforsch., 25b (1970) 1314.
143.	K.G. Allum and R.G. Hancock, Ger. Offen. 2,003,294; Chem. Abstr., <u>74</u> (1971) 54804m.
144.	P.T. Greene and R.F. Bryan, J. Chem. Soc. A, (1971) 1559.
145.	H. Vahrenkamp, Chem. Ber., <u>104</u> (1971) 449.
146.	J.L. Calderon, F.A. Cotton, B.G. DeBoer and N. Martinez, Chem. Commun., (1971) 1476.
147.	R. Mason, G.A. Rusholme, W. Beck, H. Englemann, K. Joos, B. Lindenberg and H.S. Smedal, Chem. Commun., (1971) 496.
148.	L.F. Dahl, E. Ishishi and R.E. Rundle, J. Chem. Phys., <u>26</u> (1957) 1750.
149.	M.I. Bruce, B.L. Goodall, M.Z. Iqbal, F.G.A. Stone, R.J. Doedens and R.G. Little, Chem. Commun., (1971) 1595.
150.	J.P. Crow, W.R. Cullen, F.L. Hou, L.Y.Y. Chan and F.W.B. Einstein, Chem. Commun., (1971) 1229.
151.	G. Thiele and G. Liehr, Chem. Ber., <u>104</u> (1971) 1877.
152.	V.G. Albano, P.L. Bellon and G. Ciani , J. Organometal. Chem., <u>31</u> (1971) 75.
153.	D.R. Swift, Dissertation Abstr., <u>32</u> (1971) 1432-B.
154.	F.A. Hartman, Ph.D. Thesis, The Ohio State University (1966).
155.	E. Hädicke and W. Hoppe, Acta Cryst., <u>B27</u> (1971) 760.
156.	S.Z. Goldberg, E.N. Duesler and K.N. Raymond, Chem. Commun., (171) 826.
157.	M.A. Bennett, G.B. Robertson, R. Watt and P.O. Whimp, Chem. Commun., (1971) 752.
158.	M.J. Barrow, O.S. Mills, F. Haque and P.L. Pauson, Chem. Commun., (1971) 1239.
159.	N.I. Gapotchenko, Yu. T. Struchkov, N.V. Alekseev and I.A. Ropova, Zh. Strukt. Khim., <u>12</u> (1971) 571; Chem. Abstr., <u>75</u> (1971) 134110t.
160.	W. Clegg and P.J. Wheatley, J. Chem. Soc. A, (1971) 3572.
161.	A.S. Foust, J.K. Hoyano and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C65.

- 162. R. Hoxmeier, B. Deubzer and H.D. Kaesz, J. Amer. Chem. Soc., <u>93</u> (1971) 536.
- 163. P.J. Vergamini, H. Vahrenkamp and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6326.
- 164. R.P. White, Jr., Dissertation Abstr., <u>31</u> (1971) 5303-B.
- 165. B.R. Davis and J.A. Ibers, J. Amer. Chem. Soc., <u>93</u> (1971) 578.
- 166. G.B. Blakney and W.F. Allen, Inorg. Chem., 10 (1971) 2763.
- 167. D.A. Brown and W.J. Chambers, J. Chem. Soc. A, (1971) 2083.
- 168. R.L. DeKock, A.C. Sarapu and R.F. Fenske, Inorg. Chem., 10 (1971) 38.
- 169. R.A. Levenson, Dissertation Abstr., 32 (1971) 143-B.
- 170. D.A. Brown, W.J. Chambers, N.J. Fitzpatrick and R.M. Rawlison, J. Chem. Soc. A, (1971) 720.
- 171. D.T. Clark and D.B. Adams, Chem. Commun., (1971) 740.
- 172. J. Müller, K. Fenderl and B. Mertschenk, Chem. Ber., 104 (1971) 700.
- 173. P.C. Fantucci, V. Valenti and F. Cariati, Inorg. Chim. Acta, 5 (1971) 425.
- 174. J.G. Dunn and D.A. Edwards, Chem. Commun., (1971) 482.
- 175. A.N. Nesmeyanov, G.G. Dvoryantseva, Yu.N. Sheinker, N.E. Kolobova and K.N. Anisimov, Dokl. Akad. Nauk SSSR, Ser. Khim., <u>169</u> (1966) 843.
- 176. S.A.R. Knox, R.J. Hoxmeier and H.D. Kaesz, Inorg. Chem., <u>10</u> (1971) 2636.
- 177. H.J. Beck, E.O. Fischer and C.G. Kreiter, J. Organometal. Chem., 26 (1971) C41.
- 178. D.K. Ottesen, Dissertation Abstr., 32 (1971) 147-B.
- 179. A. Terzis, Dissertation Abstr., <u>31</u> (1971) 4565-B.
- 180. W.A. McAllister and A.L. Marston, Spectrochim. Acta, <u>274</u> (1971) 523.
- 181. F.T. Delbeke, E.G. Claeys and G.P. van der Kelen, J. Organometal. Chem., <u>28</u> (1971) 391.
- 182. G. Keeling, S.F.A. Kettle and I. Paul, J. Chem. Soc. A, (1971) 3143.
- 183. S. Onaka, Bull. Chem. Soc. Japan, <u>44</u> (1971) 2135.
- 184. C.O. Quicksall, Dissertation Abstr., 32 (1971) 2058-B.
- 185. D.M. Adams, M.A. Hooper and A. Squire, J. Chem. Soc. A, (1971) 71.
- 186. G.O. Evans and R.K. Sheline, Inorg. Chem., <u>10</u> (1971) 1598.

387 MANGANESE, TECHNETIUM AND RHENIUM 187. J.W. White and C.J. Wright, J. Chem. Soc. A, (1971) 2843. 188. A.R. Manning, J. Chem. Soc. A, (1971) 106. 189. H.J. Buttery, S.F.A. Kettle, G. Keeling, P.J. Stamper and I. Paul, J. Chem. Soc. A, (1971) 3148. 190. S.F.A. Kettle, I. Paul and P.J. Stamper, Chem. Commun., (1971) 235. M.I. Foreman and F. Haque, J. Chem. Soc. B, (1971) 418. 191. 192. G.L. Khetrapal, A.C. Kunwar and C.R. Kanekar, Chem. Phys. Letters, 9 (1971) 437. 193. R.P. Stewart, Jr., Dissertation Abstr., 31 (1971) 6485-B. 194. S. Onaka, Y. Sasaki and H. Sano, Bull. Chem. Soc. Japan, 44 (1971) 726. S. Onaka, T. Miyamoto and Y. Sasaki, Bull. Chem. Soc. Japan, 44 195. (1971) 1851. 196. H.W. Spiess and R.K. Sheline, J. Chem. Phys., 54 (1971) 1099. 197. T.B. Brill and G.G. Long, Inorg. Chem., 10 (1971) 74. V.V. Dem'yanchuk, Obshch. Prikl. Chim., (1970) 161; Chem. Abstr., 198. <u>74</u> (1971) 103801u. 199. A.K. Baev, V.V. Dem'yanchuk, G. Mirzoev, G.I. Novikov and N.E. Kolobova, Zh. Fiz. Khim., 45 (1971) 1368; Chem. Abstr., 75 (1971) 80991k. 200. A.K. Baev and V.V. Dem'yanchuk, Obshch. Prikl. Khim., (1970) 65; Chem. Abstr., 74 (1971) 103799z. R.V. Kerley and A.E. Felt, U.S. 3,536,623; Chem. Abstr., 74 201. (1971) 5308u. 202. G.C. Licke, U.S. 3,585,012; Chem. Abstr., 75 (1971) 38718b. 203. W.S. Anderson, J. Applied Polymer Sci., 15 (1971) 2063.